Towards Unsupervised Machine Translation

王瑞(Wang, Rui)

Department of Computer Science and Engineering Shanghai Jiao Tong University

Menu

□ About Me

- □ Background of Machine Translation (MT)
- **Supervision in MT**
- □ Unsupervised MT

About Me

Experience:

- > 2021-: Associate Professor & Ph.D. Advisor, Shanghai Jiao Tong University, Shanghai, China
- 2016-2020: Postdoctoral/Tenure-Track/Tenured Researcher, National Institute of Information and Communications Technology, Kyoto, Japan

Research Interest:

- Machine Translation (MT)
- Multilingual Natural Language Processing (NLP)
- Recent Research Activity
 - Area Chair: ICLR-2021 and NAACL-2021
 - > Tutorial: *EACL-2021* (this talk) and EMNLP-2021
- Homepage of this tutorial:
 - <u>https://wangruinlp.github.io/unmt</u>

Menu

About Me

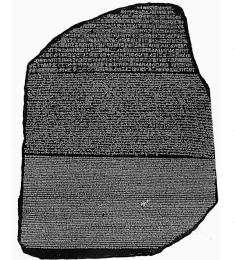
Background of Machine Translation (MT)

- **Given Supervision in MT**
- □ Unsupervised MT

MT: History

Human Translation

- ➢ 3rd∼1st BC Bible Translation in West
- > 1st AD: Buddhism Translation in China



Ancient Egyptian (hieroglyphic)

Ancient Egyptian (Demotic)

Ancient Greek

□ Machine Translation:

Rosetta Stone (196 BC)

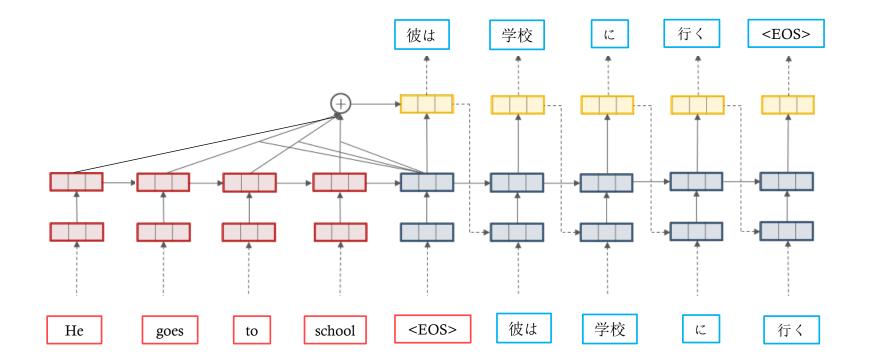
- Starting from 1949, treat the source language as an *encrypted* target language.
- 1970s- Rule based MT.
- 1980s- Example based MT.
- 1990s- Statistical MT.
- 2010s- Neural MT.

MT: from ML aspect

- □ MT is a typical text generation task.
 - *x*: source sentence; *y*: target sentence.
 - maximum likelihood estimation (MLE):
- □ MT has a standard evaluation metric:
 - *n*-gram: contiguous sequence of *n* words.

$$\mathcal{L}_{\text{MLE}}(\theta) = -\log p_{\theta}(\boldsymbol{y}|\boldsymbol{x}) = -\sum_{i=1}^{l} \log p_{\theta}(y_i|\boldsymbol{x}, \boldsymbol{y}_{< i})$$

$$BLEU = \frac{\sum ngram_{correct}}{\sum ngram_{in \ _ reference}}$$



Menu

□ About Me

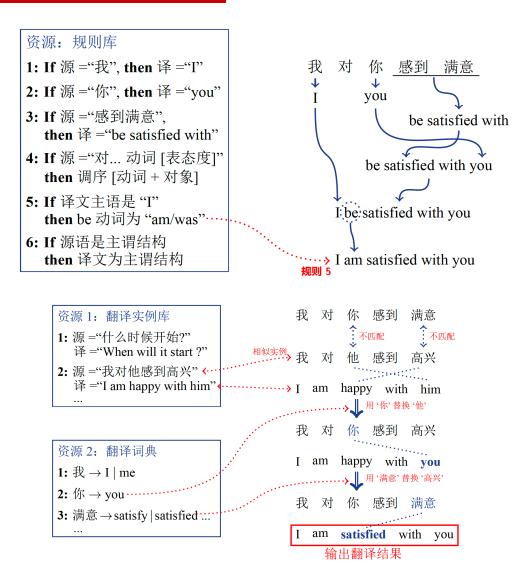
- □ Background of Machine Translation (MT)
- **Supervision in MT**
- □ Unsupervised MT

Supervision in MT

□ Rule-based MT:

Annotated linguistic rules

- **Example-based** MT:
 - Translation examples

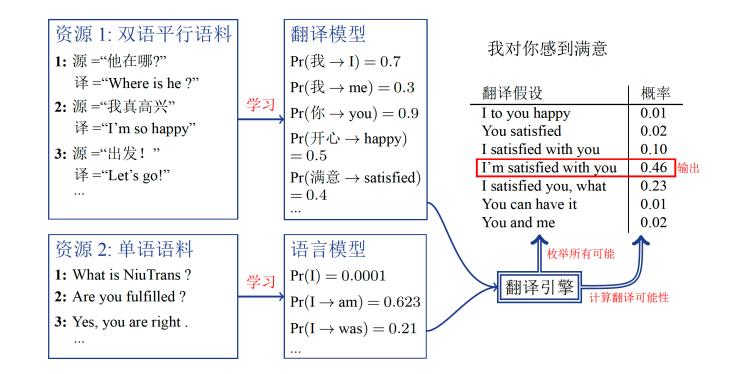


[Examples from Xiao and Zhu, SMT-Book]

Supervision in MT

□ Statistical Machine Translation (SMT)

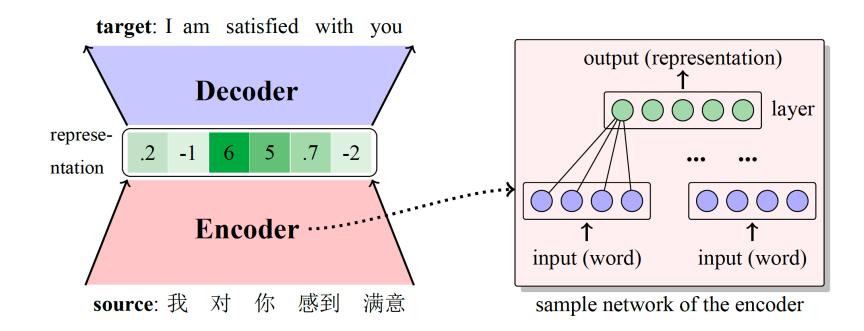
- > Parallel corpus: sentence-level alignment.
- Monolingual corpus: *n*-grams probability.
- > To learn the translation rules statistically.



Supervision in MT

□ Neural Machine Translation (NMT):

- > Parallel corpus as sequence-to-sequence input.
- Rules are not necessary any more.

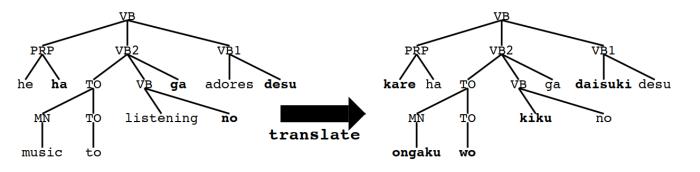


What Is Supervision in MT

- □ Supervision in machine learning?
- □ Supervision in linguistic?
- □ What do you think?

What Is Supervision in MT

- **Supervision in linguistic:**
 - ▶ Shared words or subwords: *restaurant* in French and English. 一般 in Chinese and Japanese
 - > The same or similar syntactic structure
 - > The same or similar pronunciation



Supervision in machine learning: parallel input {X, Y} or monolingual input {X} and {Y}

- Bilingual lexicon
- Phrase table

. . .

- Parallel sentences
- Comparable document

Does Supervised Always Necessary?

Does Supervised Always Necessary?

- □ My understanding
 - Supervision in linguistic is always necessary.
 - Supervision in machine learning is not always necessary.
- Definition of Unsupervised MT in machine learning
 - > No parallel training corpus is given.
 - > Dev corpus is only used to select model.

Menu

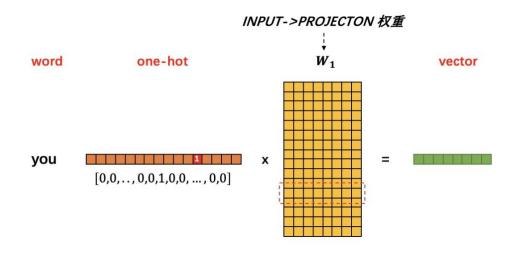
□ About Me

- □ Background of Machine Translation (MT)
- **Supervision in MT**
- **Unsupervised MT**

Monolingual Word Embedding

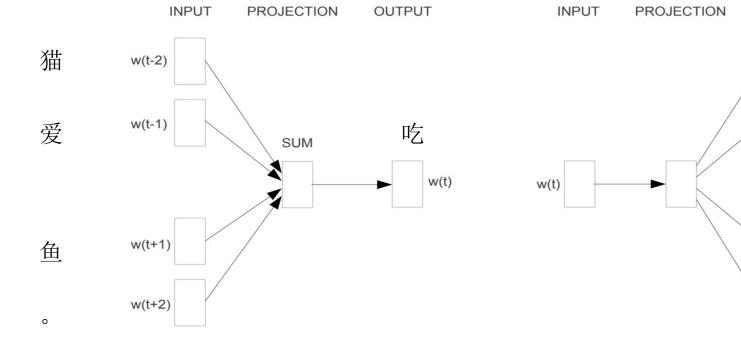
- □ As the development of neural network technology in NLP, words can be represented in continuous space.
- □ However, too sparse...

$$egin{aligned} {
m I} \Leftrightarrow V_{
m I} = & [1,0,0,0,0,0,0,0,\dots,0] \ {
m you} \Leftrightarrow V_{
m you} = & [0,1,0,0,0,0,0,\dots,0] \ {
m is} \Leftrightarrow V_{
m is} = & [0,0,1,0,0,0,0,\dots,0] \ {
m are} \Leftrightarrow V_{
m are} = & [0,0,0,1,0,0,0,\dots,0] \ {
m very} \Leftrightarrow V_{
m very} = & [0,0,0,0,1,0,0,\dots,0] \ {
m wise} \Leftrightarrow V_{
m wise} = & [0,0,0,0,0,1,0,\dots,0] \ {
m smart} \Leftrightarrow V_{
m smart} = & [0,0,0,0,0,0,1,\dots,0] \end{aligned}$$



Monolingual Word Embedding

- **Training Objective**
- For Example:



w(t+1) w(t+2)

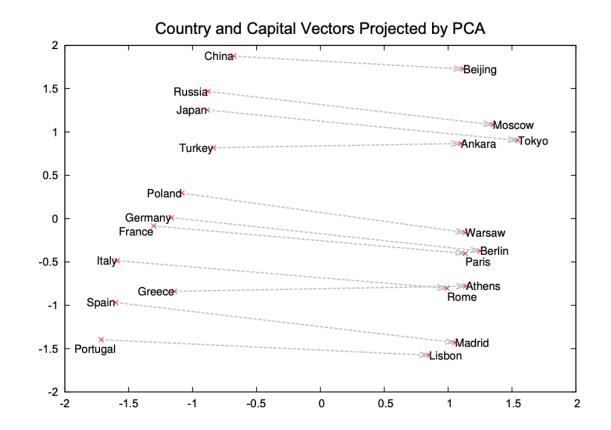
OUTPUT

w(t-2)

w(t-1)

Monolingual Word Embedding

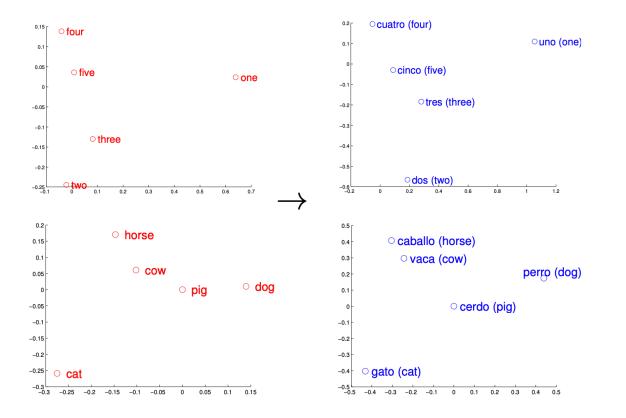
□ Then, there is some interesting findings.



[Mikolov et al., NeurIPS-2013]

Bilingual Word Embedding (BWE)

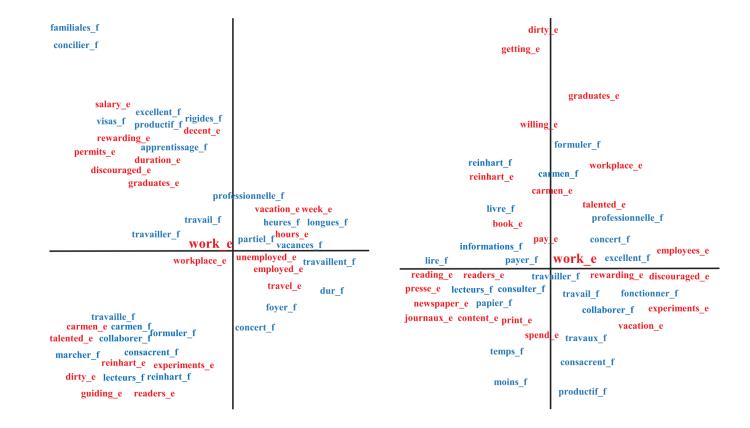
- □ To project one language space onto anther, researchers have to learn a translation map (matrix).
- □ The most typical supervision is an annotated lexicon (i.e., 5000 words).



[Mikolov et al., ArXiv-2013]

Bilingual Word Embedding (BWE)

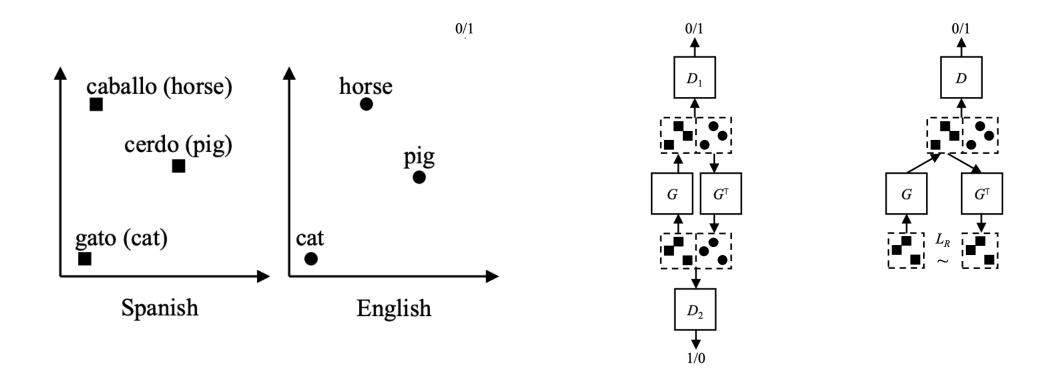
Polysemy is not easy to project.



[Wang et al., IJCAI-2016]

Unsupervised BWE

- Generative adversarial network (GAN) makes unsupervised BWE possible.
- □ The hypotheses is that different languages have similar word distribution.



[Zhang et al., ACL-2017]

BWE Performance

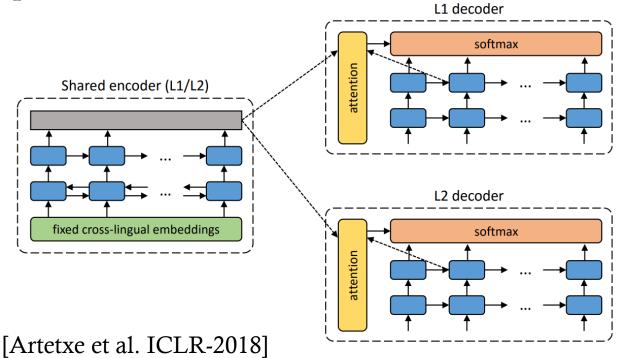
□ No significant difference between supervised and unsupervised BWE

	en-de	en-fr	en-es	en-it	en-pt	de-fr	de-es	de-it	de-pt	fr-es	fr-it	fr-pt	es-it	es-pt	it-pt
Supervised metho	Supervised methods with cross-lingual supervision														
Sup-BWE-Direct	73.5	81.1	81.4	77.3	79.9	73.3	67.7	69.5	59.1	82.6	83.2	78.1	83.5	87.3	81.0
Unsupervised met	Unsupervised methods without cross-lingual supervision														
BWE-Pivot	74.0	82.3	81.7	77.0	80.7	71.9	66.1	68.0	57.4	81.1	79.7	74.7	81.9	85.0	78.9
BWE-Direct	74.0	82.3	81.7	77.0	80.7	73.0	65.7	66.5	58.5	83.1	83.0	77.9	83.3	87.3	80.5
MAT+MPSR	74.8	82.4	82.5	78.8	81.5	76.7	69.6	72.0	63.2	83.9	83.5	79.3	84.5	87.8	82.3
	de-en	fr-en	es-en	it-en	pt-en	fr-de	es-de	it-de	pt-de	es-fr	it-fr	pt-fr	it-es	pt-es	pt-it
Supervised metho	ds with	cross-li	ingual s	upervis	sion										
Sup-BWE-Direct	72.4	82.4	82.9	76.9	80.3	69.5	68.3	67.5	63.7	85.8	87.1	84.3	87.3	91.5	81.1
Unsupervised methods without cross-lingual supervision															
BWE-Pivot	72.2	82.1	83.3	77.7	80.1	68.1	67.9	66.1	63.1	84.7	86.5	82.6	85.8	91.3	79.2
BWE-Direct	72.2	82.1	83.3	77.7	80.1	69.7	68.8	62.5	60.5	86	87.6	83.9	87.7	92.1	80.6
MAT+MPSR	72.9	81.8	83.7	77.4	79.9	71.2	69.0	69.5	65.7	86.9	88.1	86.3	88.2	92.7	82.6

[Chen et al. EMNLP-2018]

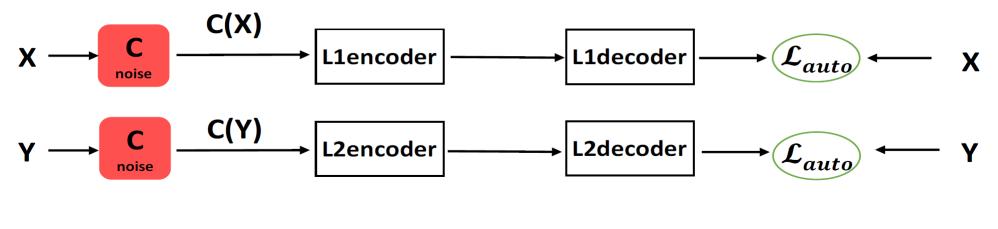
What's Next?

- □ Now we have word translation. How to conduct sentence translation?
- □ Initialization
 - Unsupervised bilingual word embedding
 - Cross-lingual language model
- □ Sharing latent representations



Unsupervised NMT

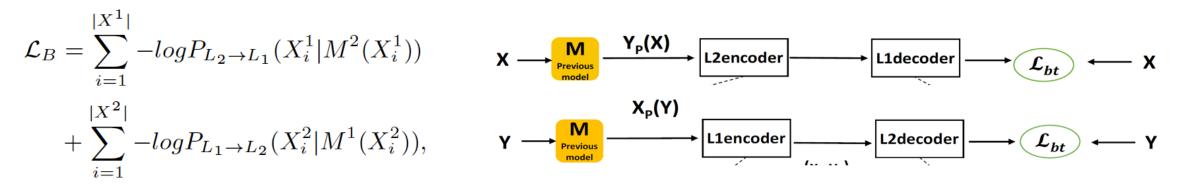
Denoising: optimizes probability of reconstruction from a noised version C(X) in the encoder to the original sentence (X) in the decoder.



$$\mathcal{L}_{D} = \sum_{i=1}^{|X^{1}|} -log P_{L_{1} \to L_{1}}(X_{i}^{1}|C(X_{i}^{1})) + \sum_{i=1}^{|X^{2}|} -log P_{L_{2} \to L_{2}}(X_{i}^{2}|C(X_{i}^{2})),$$

Unsupervised NMT

- Back-translation
 - > Optimizes the probability of encoding (pseudo parallel) translated sentence M(X) from L2 and recovering the original sentence X with the L1 decoder.

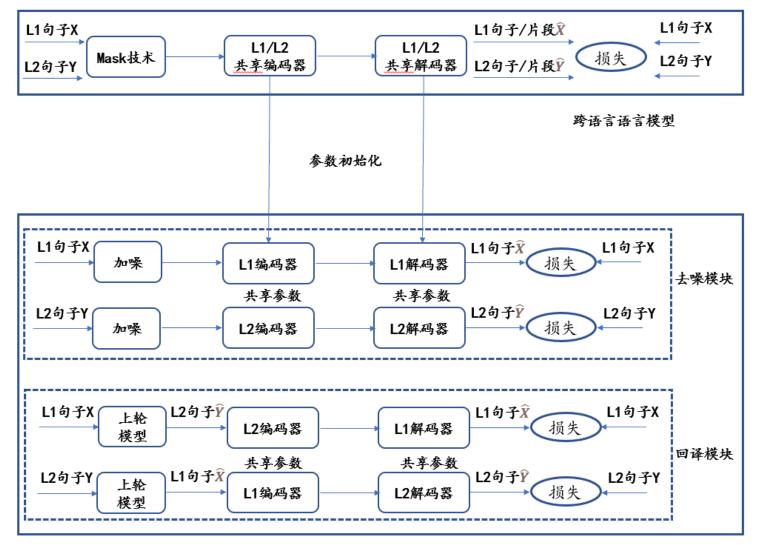


Final Training Objective:

• Jointly optimize the back-translation and denoising

$$\mathcal{L}_{all} = \mathcal{L}_D + \mathcal{L}_B.$$

Entire Structure (Sorry in Chinese)



Performance of UNMT

□ Much worse than supervised NMT

□ Why?

		FR-EN	EN-FR	DE-EN	EN-DE
Unsupervised	 Baseline (emb. nearest neighbor) Proposed (denoising) Proposed (+ backtranslation) Proposed (+ BPE) 	9.98 7.28 15.56 15.56	6.25 5.33 15.13 14.36	7.07 3.64 10.21 10.16	4.39 2.40 6.55 6.89
Semi- supervised	5. Proposed (full) + 10k parallel6. Proposed (full) + 100k parallel	18.57 21.81	17.34 21.74	11.47 15.24	7.86 10.95
Supervised	 7. Comparable NMT (10k parallel) 8. Comparable NMT (100k parallel) 9. Comparable NMT (full parallel) 10. GNMT (Wu et al., 2016) 	1.88 10.40 20.48 -	1.66 9.19 19.89 38.95	1.33 8.11 15.04 -	0.82 5.29 11.05 24.61

[Artetxe et al. ICLR-2018]

Key: Cross-Lingual Representation

- How to improve UNMT?
 - > The back-translation and denoising is difficult to improve.
 - > The key point is to improve the quality of cross-lingual representation.
- Method
 - Improve the pre-training of cross-lingual representation.
 - > Improve cross-lingual representation during UNMT training.

Better Pre-training

□ Large-scale masked cross-lingual language model.

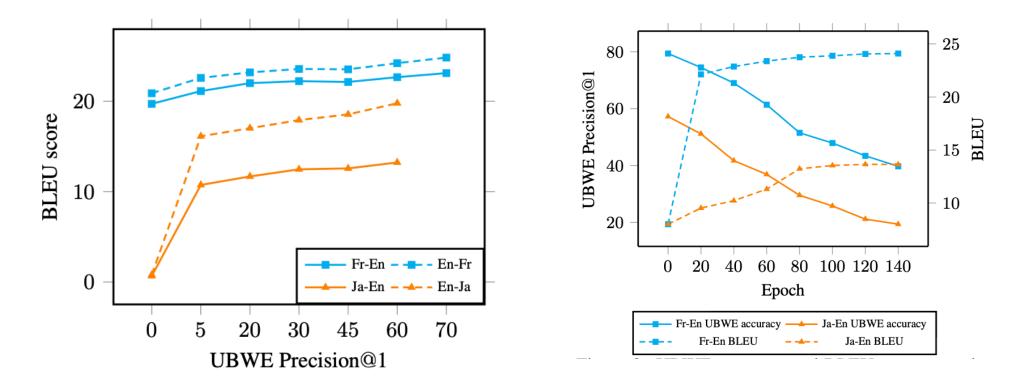
Masked Languag Modeling (MLM)	e	take			[/s]			drink		now			_		
						Trans	former						Р	revious	s sta
Token embeddings Position embeddings	↑ [/s] + 0	↑ [MASK] + 1	↑ a + 2	★ seat + 3	↑ [MASK] + 4	↑ have + 5	↑ a + 6	↑ [MASK] + 7	↑ [/s] + 8	↑ [MASK] + 9	↑ relax + 10	▲ and + 11	P P	MT BSMT BSMT	+ N
Language	+ en	+ en	+ en	+ en	+ en	+ en	+ en	+ en	+ en	+ en	+ en	+ en	0	ur resi	ılts j
embeddings	en	en	en	en	en	en	en	en	en	en	en		E	MB	EN
Translation Lange Modeling (TLM)	uage		curtains	were				les ↑			bleus			-	CI MI
						Trans	former						C	LM	1011
Token embeddings	↑ [/s] +	↑ the +	↑ [MASK] +	↑ [MASK] +	↑ blue +	↑ [/s] +	↑ [/s] +	↑ [MASK] +	∱ rideaux +	∱ étaient +	↑ [MASK] +	↑ [/s] +	C	CLM CLM	CI MI
Position	0	1	2	3	4	5	0	1	2	3	4	5		ILM ILM	CI
embeddings								+			+	+			

		en-fr	fr-en	en-de	de-en	en-ro	ro-en		
Previou	Previous state-of-the-art - Lample et al. (2018b)								
NMT		25.1	24.2	17.2	21.0	21.2	19.4		
PBSMT		28.1	27.2	17.8	22.7	21.3	23.0		
PBSM7	T + NMT	27.6	27.7	20.2	25.2	25.1	23.9		
Our results for different encoder and decoder initializations									
EMB	EMB	29.4	29.4	21.3	27.3	27.5	26.6		
-	-	13.0	15.8	6.7	15.3	18.9	18.3		
-	CLM	25.3	26.4	19.2	26.0	25.7	24.6		
-	MLM	29.2	29.1	21.6	28.6	28.2	27.3		
CLM	-	28.7	28.2	24.4	30.3	29.2	28.0		
CLM	CLM	30.4	30.0	22.7	30.5	29.0	27.8		
CLM	MLM	32.3	31.6	24.3	32.5	31.6	29.8		
MLM	-	31.6	32.1	27.0	33.2	31.8	30.5		
MLM	CLM	33.4	32.3	24.9	32.9	31.7	30.4		
MLM	MLM	33.4	33.3	26.4	34.3	33.3	31.8		

[Lample et al. NeurIPS-2019]

Better Training

- □ The UNMT performance is related to the quality of UBWE.
- □ However, the quality of UBWE significantly decrease during UNMT training.

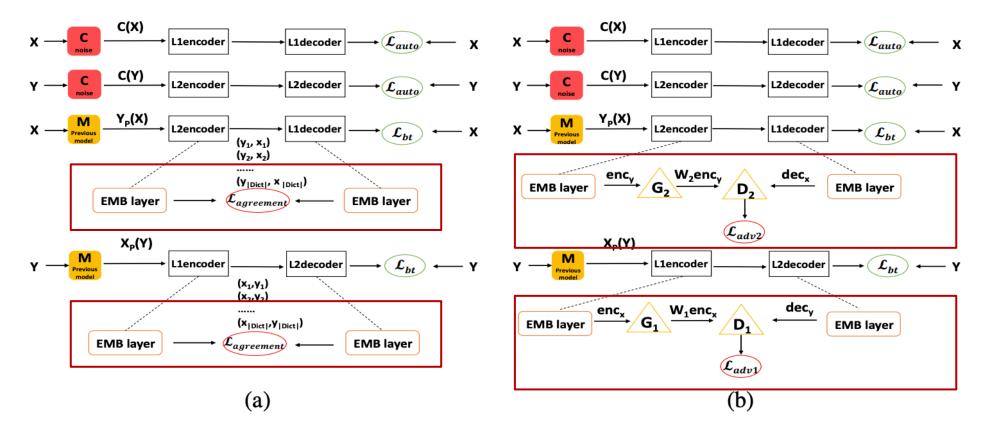


[Sun and **Wang*** et al. ACL-2019]

Joint UBWE and UNMT Training

Our contribution

> We propose a joint UBWE and UNMT training method.

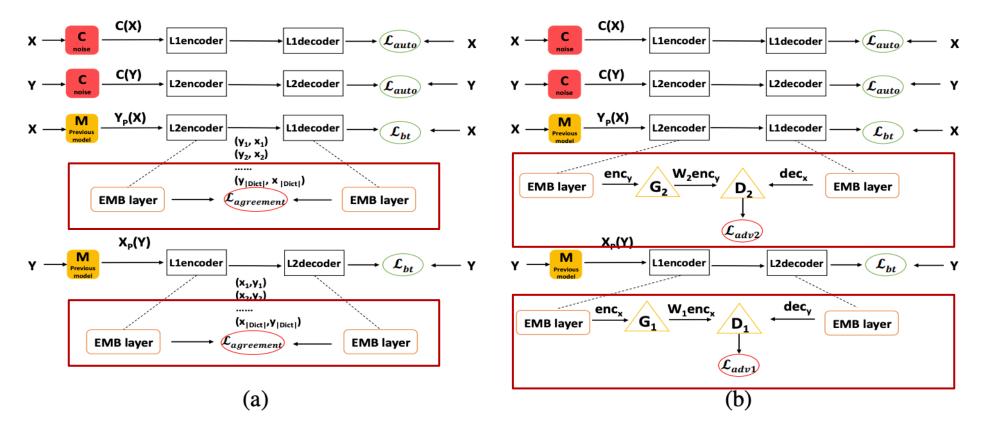


$$L_{UNMT} = L_{Denoising} + L_{Back-Translation}$$

Joint UBWE and UNMT Training

Our contribution

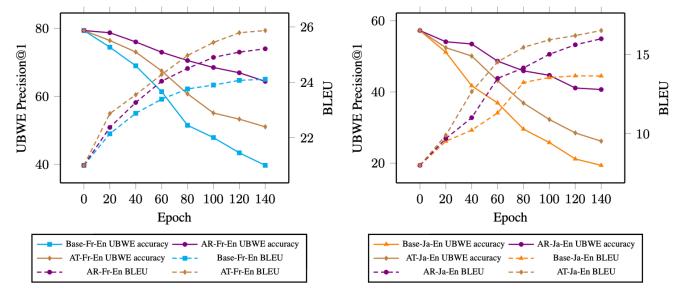
> We propose a joint UBWE and UNMT training method.



$$L_{UNMT} = L_{Denoising} + L_{Back-Translation} + L_{Agreement}$$

32

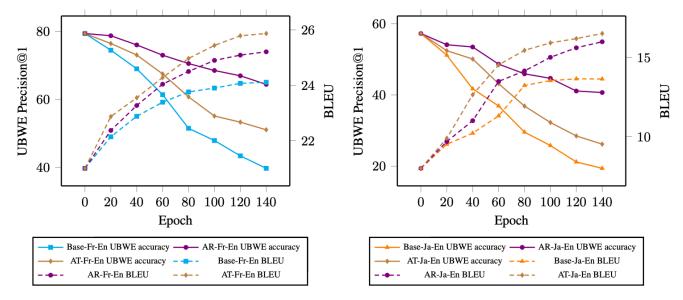
Performance: Unsupervised Translation



(a) Fr-En

(b) Ja-En

Performance: Unsupervised Translation



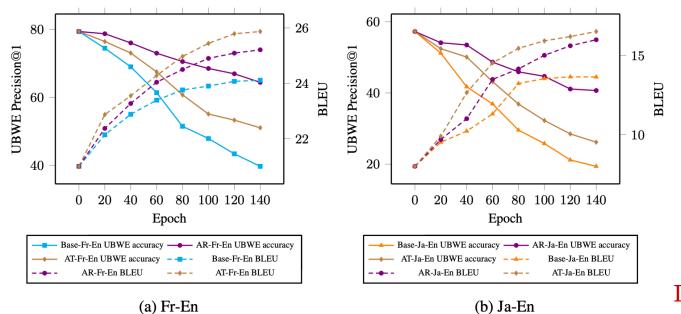
(a) Fr-En

(b) Ja-En

Method	Fr-En	En-Fr	De-En	En-De	Ja-En	En-Ja
Artetxe <i>et al.</i> [16]	15.56	15.13	n/a	n/a	n/a	n/a
Lample <i>et al.</i> [17]	14.31	15.05	13.33	9.64	n/a	n/a
Yang <i>et al.</i> [36]	15.58	16.97	14.62	10.86	n/a	n/a
Lample <i>et al.</i> [19]	24.20	25.10	21.00	17.20	n/a	n/a
UNMT-BWE Baseline	24.50	25.37	21.23	17.06	14.09	21.63
+ UBWE agreement regularization	25.21++	27.86++	22.38++	18.04++	16.36++	23.01++
+ UBWE adversarial training	25.87++	28.38++	22.67++	18.29++	17.22++	23.64++

(Sun and Wang* et al. ACL-2019)

Performance: Unsupervised Translation



Distant language pair

Method	Fr-En	En-Fr	De-En	En-De	Ja-En	En-Ja
Artetxe <i>et al.</i> [16]	15.56	15.13	n/a	n/a	n/a	n/a
Lample <i>et al.</i> [17]	14.31	15.05	13.33	9.64	n/a	n/a
Yang <i>et al.</i> [36]	15.58	16.97	14.62	10.86	n/a	n/a
Lample <i>et al.</i> [19]	24.20	25.10	21.00	17.20	n/a	n/a
UNMT-BWE Baseline	24.50	25.37	21.23	17.06	14.09	21.63
+ UBWE agreement regularization	25.21++	27.86++	22.38++	18.04++	16.36++	23.01++
+ UBWE adversarial training	25.87++	28.38++	22.67++	18.29++	17.22++	23.64++

(Sun and Wang* et al. ACL-2019)

What is the performance now?

- Our system is the best in WMT-2019 and WMT-2020, the most important MT shared task in the world.
- Our system is comparable to the online commercial systems (in gray) which uses the parallel data. German \rightarrow Czech

German→Czecn								
	Ave.	Ave. z	System					
(63.9	0.426	online-Y					
(62.7	0.386	online-B					
	61.4	0.367	NICT					
	59.8	0.319	online-G					
	55.7	0.179	NEU-KingSoft					
:	54.4	0.134	online-A					
	47.8	-0.099	lmu-unsup-nmt					
	46.6	-0.165	CUNI-Unsupervised-NER-post					
	41.7	-0.328	Unsupervised-6929					
	39.1	-0.405	Unsupervised-6935					
	28.4	-0.807	CAiRE					

[Benjamin and Wang* et al. WMT-2019]

What is WMT?

ACL 2019 FOURTH CONFERENCE ON MACHINE TRANSLATION (WMT19)

August 1-2, 2019 Florence, Italy

Shared Task: Machine Translation of News

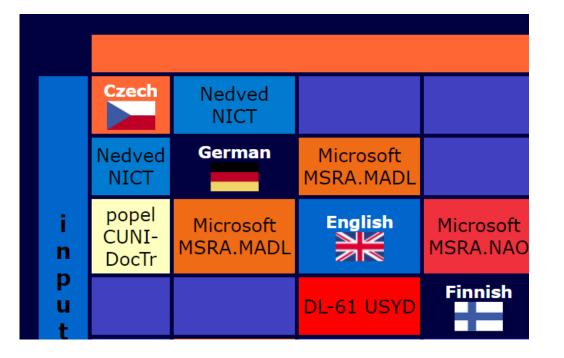
[HOME] [SCHEDULE] [PAPERS] [RESULTS] TRANSLATION TASKS: [NEWS] [BIOMEDICAL] [ROBUSTNESS] [SIMILAR] EVALUATION TASKS: [METRICS] [QUALITY ESTIMATION] OTHER TASKS: [AUTOMATIC POST-EDITING] [PARALLEL CORPUS FILTERING]

System	Submitter	System Notes	Constraint	Run Notes	BLEU	BLEU-cased	IER	BEER 2.0	<u>CharactTER</u>
NICT (Details)	Nedved NICT	Pre-trained cross-lingual LM + UNMT + USMT + pseudo SMT + pseudo NMT + fine-tuning + ensemble + USMT reranking + fixed quotes	yes		20.5	20.1	0.726	0.519	0.624
NICT (Details)	Nedvěd NICT	repeated submission due to web lag	yes		20.5	20.1	0.726	0.519	0.624
NEWBARDOSOft (Details)	NiuTrans Northeastern University	Pre-training of a cross- lingual language model + Unsupervised SMT startup + Ensemble of 2 Transforme-big models + literative back- translation - denoising auto-encoding + fix quotes	yes		19.2	18.9	0.731	0.509	0.633
Unsupervised.de-cs (Details)	StillKeepTry Nanjing University of Science and Technology	+ fix quotes, + iterative back-translation, + Unsupervised SMT data fine-tuning, + fix quotes, + beam10,		Ensemble 2 model, + Rerank, + fine tune more weight-domain data in source side,	18.0	17.8	0.752	0.486	0.670
imu-unsue-nmt-de-cs (Details)	darin UMJ Munich	Cross-lingual LM pretraining + unsupervised NMT with denoising auto-encoding and on-the-fly backtranslation + fine- tuned with unsupervised SMT backtranslated data		fixed quotes	17.4	17.0	0.754	0.488	0.758
NICT (Details)	Nedvěd NICT	repeated submission due to web lag	yes		16.9	16.5	0.763	0.494	0.655
Unsupervised.de.cs (Details)	StillkeepTry Nanjing University of Science and Technology	+ fix quotes, + iterative back-translation, + Unsupervised SMT data fine-tuning, + fix quotes, + beam10,		Single Model	16.3	16.1	0.771	0.475	0.686
NICT (Details)	Nedved NICT	single UNMT model	yes		15.9	15.5	0.774	0.482	0.673
CUNI-Unsurenvised (Details)	kvapili Charles University	Unsupervised phrased based model + Iterative back translation + NMT trained on synthetic parallel data with recordering (Transformer)	yes		15.3	15.0	0.784	0.489	0.672
CUNI-Unsupervised-combined (Details)	kvapili Charles University	Sentences with named entities tranlated by CUNI-Unsupervised- NER, sentences without named entities tranlated by CUNI-Unsupervised	yes		14.9	14.6	0.785	0.488	0.674

Account

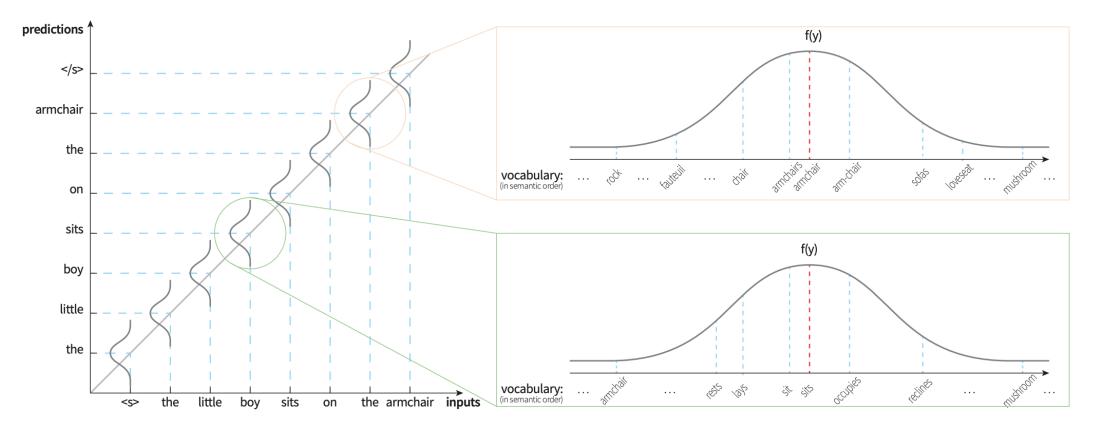
1 age 57

Who is Nedved?



What's More: Better Optimization

- □ Use the word embedding to calculate the similarity of words.
- □ Use this similarity as the training objective distribution.



[Li and Wang* et al., ICLR-2020, full-score paper]

State-of-the-art Performance (Till Recently)

System	EN-DE	EN-FR	EN-RO	EN-RO + STD
Vaswani et al. (2017) (base) Vaswani et al. (2017) (big)	27.30 28.40	38.10 41.00	-	-
Transformer (base)	27.35	38.44	33.22	36.68
+ D2GPo	27.93 ++	39.23 ++	34.00 +	37.11 +
Transformer (big)	28.51	41.05	33.45	37.55
+ D2GPo	29.10 +	41.77 ++	34.13 +	37.92 +

Supervised NMT

Method	EN-FR	FR-EN	EN-DE	DE-EN	EN-RO	RO-EN
Artetxe et al. (2017)	15.13	15.56	6.89	10.16	-	-
Lample et al. (2017)	15.05	14.31	9.75	13.33	-	-
Yang et al. (2018)	16.97	15.58	10.86	14.62	-	-
Lample et al. (2018)	25.14	24.18	17.16	21.00	21.18	19.44
XLM (Lample & Conneau, 2019)	33.40	33.30	27.00	34.30	33.30	31.80
MASS (Song et al., 2019) MASS + D2GPo	37.50 37.92	34.90 34.94	28.30 28.42	35.20 35.62	35.20 36.31	33.10 33.41

Future Trends

- Distant Language Pairs
- □ Multi-Lingual UNMT
- □ Multi-signal (speech, vision, etc.) in UNMT

Distant Language Pairs (Sorry Chinese Again)

<u>++-</u>				
语言↩	相似	语言对↩	远距离	语言对↩ ↩
	法语-英语←	德语-英语←	日语-英语←	中文-英语↔
共享单词数←	37, 257	43, 642	454	20, 662सं
共享单词所占比例↔	23. 30%	25. 40%	0. 18%	4. 91%↩↩
非监督机器翻译性能	27. 6	25.1	14.1	8. 02⋞⋞
(BLEU) ←				
				0.

表 2: 不同语言对的共享单词数据统计↔

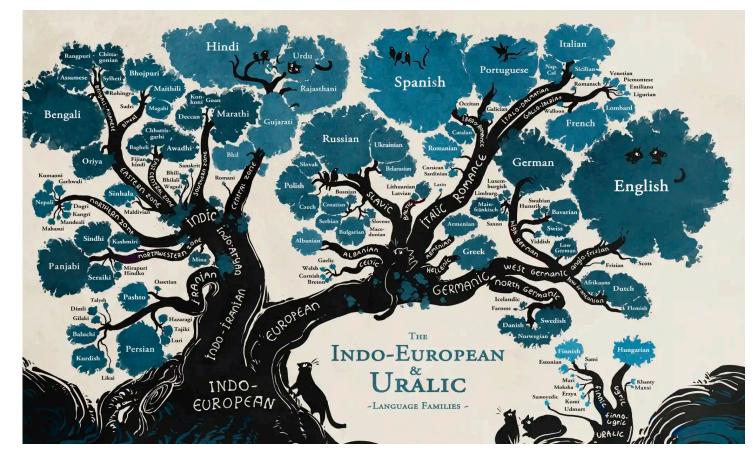
语言↩	相似;	吾言对↩	远距离语言对↩ ↩			
	法语-英语€	德语-英语↔	日语-英语←	中文-英语↔←		
语序相似度↩	76. 3%	78.1%	53. 4%	62. 2%↔		
监督机器翻译性能↔	40. 2 <	35. 0∉	30. 9 ∉	26. 4⋞		
(BLEU) ←						
非监督机器翻译性能	27. 64	25. 1 <	14. 1÷	8. 02€		
(BLEU) ←						

表 3: 不同语言对的语序相似度统计↔

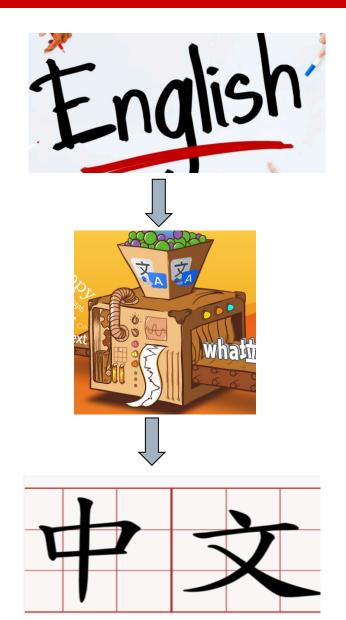
Multi-Lingual Unsupervised Translation

□ Challenge

- > There are many language families and groups in the world.
- > The language within certain language families can help each other.



Bilingual & Multi-Lingual Translation

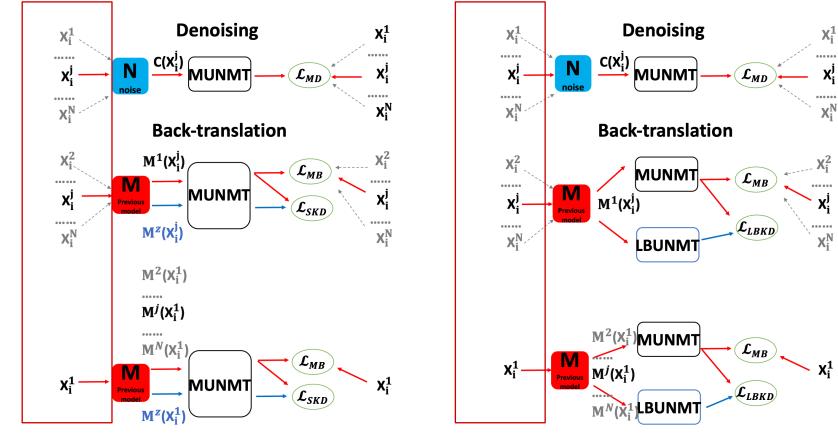


Multi-Lingual UNMT

Contribution

45

We proposed multi-lingual UNMT. \succ



Languages in the same brunch

X¹

X^j

.....

X_iN

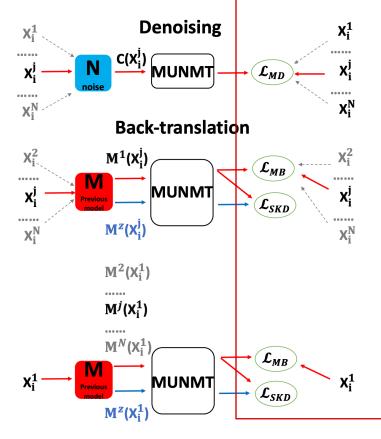
X²

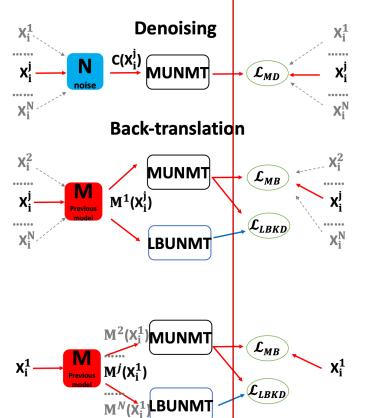
X

Multi-Lingual UNMT

Contribution

- > We proposed multi-lingual UNMT.
- > We use knowledge distillation to enhance UNMT performance.



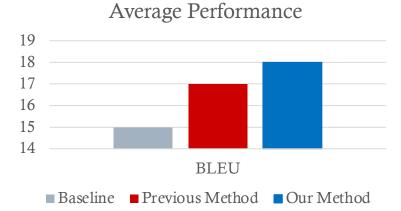


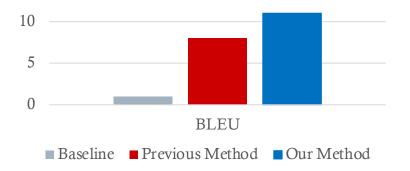
Languages in the same brunch

All languages

Performance: Multi-Lingual Translation

	Corpus	SNMT	Sen et al. (2019)	Xu et al. (2019)	SM	LBUNMT	MUNMT	SKD	LBKD	
	En-Cs	19.20	-	6.79	14.54	14.54	14.40	14.89	15.47	Our
	En-De	20.30	8.09	13.25	18.26	18.26	17.58	18.47	19.28	Metho
	En-Es	30.40	14.82	20.43	25.14	25.40	25.05	25.61	26.79	
	En-Et	25.20	-	-	14.86	15.02	14.09	15.03	15.62	
	En-Fi	27.40	-	-	9.87	9.99	9.75	10.70	10.57	
Low	En-Fr	30.60	13.71	20.27	26.02	26.36	25.84	26.45	27.78	
Resource	En-Hu	_	-	-	11.32	11.40	10.90	11.64	12.03	
	En-It	-	-	-	24.19	24.30	23.80	24.69	25.52	
	En-Lt	20.10	-	-	0.79	8.29	10.07	11.15	11.11	
	En-Lv	21.10	-	-	1.02	11.55	13.09	13.90	14.33	
	En-Ro	28.90	-	-	29.44	29.58	28.82	29.65	31.28	
	En-Tr	20.00	-	-	11.87	11.87	12.41	13.24	13.83	
	Average	_	-	-	15.61	17.21	17.15	17.95	18.63	

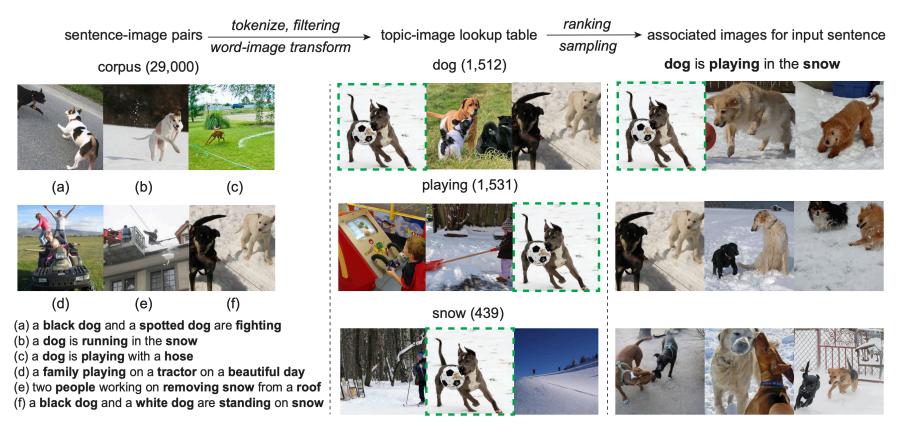




(Sun and Wang* et al. ACL-2020)

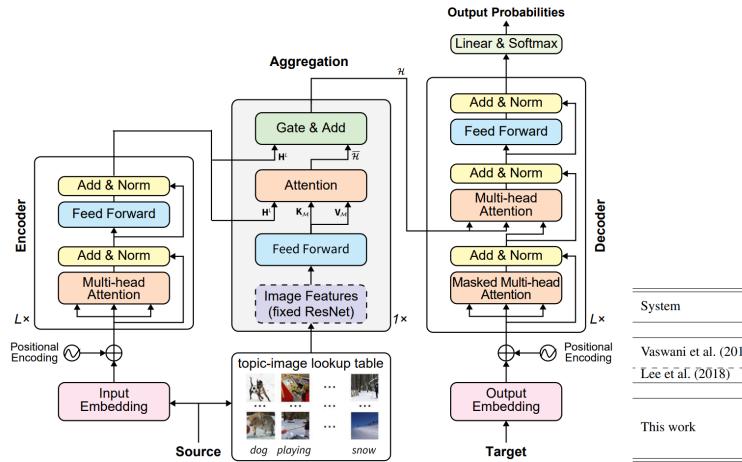
Modeling Visual Information

No only language information, but also visual, speech information etc., can be modeled in UNMT.



[Zhang and Wang* et al., ICLR-2020]

Modeling Visual Information



System	Architecture	EN-RO		EN-DE		EN-FR			
System	Architecture	BLEU	#Param	BLEU	#Param	BLEU	#Param		
Existing NMT systems									
Vaswani et al. (2017)	Trans. (base)	N/A	N/A	27.3	N/A	38.1	N/A		
Vaswalli et al. (2017)	Trans. (big)	N/A	N/A	28.4	N/A	41.0	N/A		
Lee et al. (2018)	Trans. (base)	32.40	⁻ N/Ā		N/A	N/A	N/A		
		Our l	VMT system.	5					
	Trans. (base)	32.66	61.54M	27.31	63.44M	38.52	63.83M		
This work	+VR	33.78++	63.04M	28.14 ++	64.94M	39.64++	65.33M		
	Trans. (big)	33.85	207.02M	28.45	210.88M	41.10	211.66M		
	+VR	34.46+	211.02M	29.14++	214.89M	41.83+	215.66M		

Table 1: Results on EN-RO, EN-DE, and EN-FR for the NMT tasks. Trans. is short for transformer. N/A denotes that those numbers are not reported in the corresponding literature. "++/+" after the BLEU score indicate that the proposed method was significantly better than the corresponding baseline Transformer (base or big) at significance level p < 0.01/0.05.

Conclusion

- □ My understanding
 - Supervision in linguistic is always necessary.
 - Supervision in machine learning is not always necessary.

- □ Welcome to join us to work on MT!
 - https://wangruinlp.github.io/
 - wangrui.nlp@gmail.com

Thank You!