Neural Machine Translation with Source Dependency Representation

Kehai Chen1, Rui Wang2, Masao Utiyama2, Lemao Liu3, Akihiro Tamura4, Eiichiro Sumita2 and Tiejun Zhao1

1Harbin Institute of Technology, China
2National Institute of Information and Communications Technology, Japan
3Tencent AI Lab, China
4Ehime University, Japan
Overview

• Traditional NMT Model

\[\text{Src: } x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \]

\[\downarrow \]

Standard NMT model

\[\text{Trg: } y_1 \quad y_2 \quad y_3 \quad y_4 \quad y_5 \quad y_6 \quad y_7 \quad y_8 \]
Overview

Our proposed NMT model

Inspired by the syntax knowledge in SMT, we want to explicitly integrate source dependency information into NMT.
Related Work

• NMT with source syntax information

 - Tree2seq (Eriguchi et al., 2016; Li et al., 2017; +other)
 Tree-based neural network is used to encode source phrase structures
 - Extending source inputs with syntax labels (Sennrich et al., 2016; Chen et al., 2017; +other)
 Dependency labels are concatenated to source word
Related Work

• NMT with source syntax information

 - Tree2seq (Eriguchi et al., 2016; Li et al., 2017; +other)
 Tree-based neural network is used to encode source phrase structures
 - Extending source inputs with syntax labels (Sennrich et al., 2016; Chen et al., 2017; +other)
 Dependency labels are concatenated to source word

• Our work

 - A compromise between the two kinds of works
 - A novel double context approach to utilizing source dependency constraints
Source Dependency Representation (SDR)

• Extracting a dependency unit for each source word to capture source long-distance dependency constraints:

$$U_j = \langle PA_{x_j}, SI_{x_j}, CH_{x_j} \rangle$$
Source Dependency Representation (SDR)

• Extracting a dependency unit for each source word to capture source long-distance dependency constraints:

$$U_j = \langle PA_{x_j}, SI_{x_j}, CH_{x_j} \rangle$$

Where PA_{x_j}, SI_{x_j}, and CH_{x_j} denote the parent, siblings and children words of source word x_j in a dependency structure.

Take x_2 as an example:

$$PA_{x_2} = \langle x_3 \rangle,$$

then,

$$U_2 = \langle x_3, x_1, x_4, x_7, \varepsilon \rangle$$

$$SI_{x_2} = \langle x_1, x_4, x_7 \rangle,$$

$$CH_{x_2} = \langle \varepsilon \rangle,$$
Source Dependency Representation (SDR)

- Learn semantic representation of each dependency unit

 Take x_2 as an example: $\text{PA}_{x_2} = < x_3 >$, then, $U_2 = < x_3, x_1, x_4, x_7, e >$

 $\text{SI}_{x_2} = < x_1, x_4, x_7 >$,

 $\text{CH}_{x_2} = < e >$.

Diagram:

- Input layer: $10 \times d$
- Convolution layer 1: $3 \times d$ kernel
- Max-pooling layer 1: $8 \times d$
- Convolution layer 2: $4 \times d$
- Max-pooling layer 2: $2 \times d$
- Output layer: $1 \times d$
Neural Machine Translation with SDR

SDRNMT-1:

Src

Dep Tuples

Encoder

$$V_{x_1} \rightarrow h_1 \rightarrow V_{x_2} \rightarrow h_2 \rightarrow \ldots \rightarrow V_{x_J} \rightarrow h_J$$

$$x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow x_6 \rightarrow x_7$$

Decoder

$$s_{i-1} \rightarrow s_i \rightarrow y_i$$

$$\alpha_{i,2} \rightarrow \alpha_{i,3} \rightarrow \ldots \rightarrow \alpha_{i,J}$$

$$c_i$$

$$y_{i-1}$$

$$y_i$$
Neural Machine Translation with SDR

SDRNMT-1:

Where the V_{xj} is 360-dim and the learned V_{Uj} is 260-dim.
Neural Machine Translation with SDR

SDRNMT-2:

Src dep
Src
Dep Tuples

Encoder

U_1
$U_2 = \langle x_3, x_1, x_5, x_7, \epsilon \rangle$
U_j

V_{x1}
V_{x2}
V_{xJ}

V_{U1}
V_{U2}
V_{UJ}

h_1
h_2
h_J

root

$\times 1$ $\times 2$ $\times 3$ $\times 4$ $\times 5$ $\times 6$ $\times 7$
Neural Machine Translation with SDR

SDRNMT-2:

Encoder: \(h_j = f_{enc}(V_{x_j}, h_{j-1}), \)

\(d_j = f_{enc}(V_{U_j}, d_{j-1}) \)
Neural Machine Translation with SDR

SDRNMT-2:

Encoder: \[h_j = f_{\text{enc}}(V_{x_j}, h_{j-1}), \]
\[d_j = f_{\text{enc}}(V_{U_j}, d_{j-1}) \]

Attention: \[e_{i,j}^s = f(s_{i-1}^s + h_j), \]
\[e_{i,j}^d = f(s_{i-1}^d + d_j). \]
\[\alpha_{i,j} = \frac{\exp(\lambda e_{i,j}^s + (1-\lambda)e_{i,j}^d)}{\sum_{j=1}^J \exp(\lambda e_{i,j}^s + (1-\lambda)e_{i,j}^d)} \]
Neural Machine Translation with SDR

SDRNMT-2:

Encoder: \(h_j = f_{\text{enc}}(V_{x_j}, h_{j-1}) \),
\(d_j = f_{\text{enc}}(V_{U_j}, d_{j-1}) \)

Attention: \(e_{i,j}^s = f(s_{i-1}^s + h_j) \),
\(e_{i,j}^d = f(s_{i-1}^d + d_j) \).

\[\alpha_{i,j} = \frac{\exp(\lambda e_{i,j}^s + (1-\lambda)e_{i,j}^d)}{\sum_{j=1}^J \exp(\lambda e_{i,j}^s + (1-\lambda)e_{i,j}^d)} \]

Decoder: \(c_{i,j}^s = \sum_{j=1}^J \alpha_{i,j} h_j, c_{i,j}^d = \sum_{j=1}^J \alpha_{i,j} d_j \)
\(s_{i}^s = \varphi(s_{i-1}^s, y_{i-1}, c_{i}^s) \),
\(s_{i}^d = \varphi(s_{i-1}^d, y_{i-1}, c_{i}^d) \).
Neural Machine Translation with SDR

SDRNMT-2:

Encoder:
\[h_j = f_{enc}(V_{x_j}, h_{j-1}), \]
\[d_j = f_{enc}(V_{U_j}, d_{j-1}) \]

Attention:
\[e_{i,j}^s = f(s_{i-1}^s + h_j), \]
\[e_{i,j}^d = f(s_{i-1}^d + d_j). \]

\[\alpha_{i,j} = \frac{\exp(\lambda e_{i,j}^s + (1-\lambda)e_{i,j}^d)}{\sum_{j=1}^J \exp(\lambda e_{i,j}^s + (1-\lambda)e_{i,j}^d)} \]

Decoder:
\[c_{i,j}^s = \sum_{j=1}^J \alpha_{i,j} h_j, c_{i,j}^d = \sum_{j=1}^J \alpha_{i,j} d_j \]
\[s_{i-1}^s = \varphi(s_{i-1}^s, y_{i-1}, c_{i,j}^s), \]
\[s_{i-1}^d = \varphi(s_{i-1}^d, y_{i-1}, c_{i,j}^d). \]

\[p(y_i | y_{i-1}, x, T) = g(y_{i-1}, s_{i-1}^s, s_{i-1}^d, c_{i,j}^s, c_{i,j}^d) \]
Neural Machine Translation with SDR

SDRNMT-2:

Encoder:
\[h_j = f_{enc}(V_{x_j}, h_{j-1}), \]
\[d_j = f_{enc}(V_{U_j}, d_{j-1}) \]

Attention:
\[e_{i,j}^s = f(s_{i-1}^s + h_j), \]
\[e_{i,j}^d = f(s_{i-1}^d + d_j). \]

\[\alpha_{i,j} = \frac{\exp(\lambda e_{i,j}^s + (1 - \lambda)e_{i,j}^d)}{\sum_{j=1}^{J} \exp(\lambda e_{i,j}^s + (1 - \lambda)e_{i,j}^d)} \]

Decoder:
\[c_{i,j}^s = \sum_{j=1}^{J} \alpha_{i,j} h_j, c_{i,j}^d = \sum_{j=1}^{J} \alpha_{i,j} d_j \]
\[s_{i}^s = \varphi(s_{i-1}^s, y_{i-1}, c_{i}^s), \]
\[s_{i}^d = \varphi(s_{i-1}^d, y_{i-1}, c_{i}^d). \]
\[p(y_i | y_{i-1}, x, T) = g(y_{i-1}, s_{i}^s, s_{i}^d, c_{i}^s, c_{i}^d) \]

Double Context NMT
Experiments on Chinese-to-English translation task, 1.42M LDC corpus

- Parse source sentences of training data by Stanford Parser (Chang et al., 2009)
- For the SDRNMT-1 and SDRNMT-2, the dimension of V_{xj} is 360 and the dimension of V_{uj} is 260, and input embedding of the baseline is 620
- The baselines include Phrase-Based Statistical Machine Translation (PBSMT) (Koehn et al., 2007), standard Attentional NMT (AttNMT) (Bahdanau et al., 2014), NMT with dependency labels (Sennrich and Haddow, 2016)
Experimental

<table>
<thead>
<tr>
<th>System</th>
<th>Dev(NIST02)</th>
<th>NIST03</th>
<th>NIST04</th>
<th>NIST05</th>
<th>NIST06</th>
<th>NIST08</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBSMT</td>
<td>33.15</td>
<td>31.02</td>
<td>33.78</td>
<td>30.33</td>
<td>29.62</td>
<td>23.53</td>
<td>29.66</td>
</tr>
<tr>
<td>AttNMT</td>
<td>36.31</td>
<td>34.02</td>
<td>37.11</td>
<td>32.86</td>
<td>32.54</td>
<td>25.44</td>
<td>32.40</td>
</tr>
<tr>
<td>Sennrich-deponly</td>
<td>36.68</td>
<td>34.51</td>
<td>38.09</td>
<td>33.37</td>
<td>32.96</td>
<td>26.96</td>
<td>32.98</td>
</tr>
<tr>
<td>SDRNMT-1</td>
<td>36.88</td>
<td>34.98*</td>
<td>38.14</td>
<td>34.61**</td>
<td>33.58*</td>
<td>27.06</td>
<td>33.32</td>
</tr>
<tr>
<td>SDRNMT-2</td>
<td>37.34</td>
<td>35.91</td>
<td>38.73</td>
<td>34.18</td>
<td>33.76</td>
<td>27.64</td>
<td>34.04</td>
</tr>
</tbody>
</table>

“*” indicates statistically significant better than “Sennrich-deponly” at p-value < 0.05 and “**” at p-value < 0.01 by bootstrap resampling (Koehn, 2004)
Experimental Results

- Translation qualities for different sentence lengths
Conclusion

• Source dependency unit to capture source long-distance dependency constraint
• The proposed $SDRNMT-1$ and $SDRNMT-2$ consist of NMT and CNN, which are jointly trained to learn SDR and translation instead of separately trained
• Double-Context approach to further utilize source dependency representation