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Domain Adaptation

e Transfer learning: use of source domain Ds and source
task Ts to improve the effect of target domain Dt and
target task Tt

e The information of Ds and s is transferred to Dt and Tt

e Domain adaptation: a type of isomorphic transfer learning
where Ts = Tt



Why do We Need Domain Adaptation? [Jiang+, 2007; Chang+ 2009]

e In-domain training data is small

e Different distributions
o P(x): The distribution of training and testing data are different
o P(y|x): With the same example, the label are different in different
domains
e Unknown words
o There are many unseen words in the new domain
e New Types

o There are new types in the new domain (e.g., now predicting locations)



Domain Adaptation in Machine Translation:

e Ds: out-of-domain information (data, model etc.)
e Dt in-domain information (data, model etc.)
e [s = Tt. machine translation (statistical, neural etc.)

In this tutorial, we focus on empirical methods instead of
mathematics and most of the references can be found at:

A Survey of Domain Adaptation for Neural Machine
Translation, Chu and Wang, COLING-2018
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Machine Translation

e Translation: to break the barrier between different cultures:

Type Characteristics e Reference Translation

Human Translation Accurate but time-consuming -

the gunman was shot to death by the police .

e System Translations

Machine Translation Scalable but less accurate _

e Machine Translation: a classic NLP/AI task

o MT is a typical text generation task.

o MT has standard evaluation Metrics.

the gunman was police kill .

wounded police jaya of

the gunman was shot dead by the police .

the gunman arrested by police kill .

the gunmen were killed .

the gunman was shot to death by the police .
gunmen were killed by police ?ZSUB>0 ?SUB>0
al by the police .

the ringer is killed by the police .

police killed the gunman .

e Matches

green = 4 gram match (good!)
red = word not matched (bad!)



Statistical Machine Translation [Koehn, 2007]

Components: Translation model, language model, decoder

parallel text
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Workflow of SMT
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Toolkit: Moses [Koehn, 2007]

Moses

Software

Moses is a free software, statistical machine translation engine that
can be used to train statistical models of text translation from a
source language to a target language. Moses then allows new
source-language text to be decoded using these models to produce
automatic translations in the target language. Wikipedia

Operating system: Windows, Linux, macOS
Stable release: 4.0 / October 5, 2017; 22 months ago
License: LGPL

Interlingua

Syntax . ., Syntax

String-to-tree___ ,/ Tree-to-string
ierarchical \

phrase based

Phrase-based

Word-based model

Source language Target language

Written in: C++, Perl
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SMT vs NMT

Components: Translation model, language model, decoder

foreign/English
parallel text

statistical analysis
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Phrase Table (Translation Model) in SMT

> grep '| in europe |' model/phrase-table | sort -nrk 7 -t\| | head

in europa ||| in europe ||| 0.829007 0.207955 0.801493 0.492402

europas ||| in europe ||| 0.0251019 0.066211 0.0342506 0.0079563

in der europaeischen union ||| in europe ||| 0.018451 0.00100126 0.0319584 0.0196869
in europa , ||| in europe ||| 0.011371 0.207955 0.207843 0.492402

europaeischen ||| in europe ||| 0.00686548 0.0754338 0.000863791 0.046128

0.00579275 0.00914601 0.0241287 0.0162482

fuer europa ||| in europe ||| 0.00493456 0.0132369 0.0372168 0.0511473

in europa zu ||| in europe ||| 0.00429092 0.207955 0.714286 0.492402

an europa ||| in europe ||| 0.00386183 0.0114416 0.352941 0.118441

der europaeischen ||| in europe ||| 0.00343274 0.00141532 0.00099583 0.000512159

INJUL AlTITvL vl I HIIIUUU LUUHIVIULIVIT DUVUVIVUOY Ul v UVIIIHULU\J-

inverse phrase translation probability ¢(fle)
2. inverse lexical weighting lex(fle)

3. direct phrase translation probability ¢(e|f)
4. direct lexical weighting lex(elf)

im europaeischen ||| in europe ||

—



Bilingual Word Embedding

woman .
man \ girl slower
\ father &‘ won slow
cat king dUee" boy

slowest
dog \ mother 4‘ faster
\ cats daughter fast
dogs France
8 England longer

/ he fastest
Paris Italy she long
Londor/ uarantee

himself

longest
herself B

Rome

Monolingual Word Embedding

e 7V L deve|°E J build (moving

RR
af,,.*

lh& ks

‘ travel
M o

Bilingual Word Embedding
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Language Model

e A language model (LM) is a model that assigns a probability to a sentence.

e N-gram LM

In an n-gram model, the probability P(wl, cee wm) of observing the sentence wy, ..., w,, is approximated as

P(wy,...,wp) = HP(wi | Wi, wi 1) N HP(wi |wi—(n—1)7°-°7wi—1)
i=1 i=1

2-grams

-1.7037368
-3.1241505
-1.9892355
-1.0562452

<>
a boy
am a
boy .

Format (example)
3-grams
-1.4910358
-1.1888235
-0.6548149
-1.1425415

<s>] am
ITama
a boy .
.</s> 0
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Neural Network Language Model

wit) y(t)
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Continuous-space LM (CSLM) RNNLM [Mikolov, 2012]
or NNLM [Schwenk, 2010]



Decoding in SMT

N T

Hypothesis Recombination et
p=0.092 did not give p=0.017
EEEEEEE = gy HEEEEEE|
did not give p=0.092
- > B TTTTT]

p=0.164 9I*V€

e Recombined hypotheses do not have to match completely

e No matter what is added, weaker path can be dropped, if:
— last two English words match (matters for language model)
— foreign word coverage vectors match (effects future path)
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Decoding in NMT

these cities)—)(have) (an)-(independent)-(trade}>(union }>(". )

(, ((the )»(workers )(of }5( these }3(two)>( cities) have already independent)(trade }>(unions (. )

(workers thesew (set)}>(up)->(independent)trade }»(unions (. )
(an)-(independent)( trade }>( union )—)@
alread established }»(independent)>( trade }»{unions
OYCEDICD @ S

estabhshed)—)@ndependen@.;@).,@m).,@
formed)—)(independent)—)(trade)—)(unions)—)@ y
established)—)(independent)—)(trade)—)(ur;ions)

accordin,; to
g

independent)(trade}(unions }>(_. )

workers these
reported that .
(has)-(been }>(reported )—)(M)—)@—)(workersthese)

[Zhang and Wang et al., 2010]
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Domain Adaptation for Machine Translation

1. Data Centric
2. Model Centric

Imtlal Q o1 . Output

Adjust Data: What to learn Adjust Model: How to learn
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Data Selection/Generation for SMT

e Sufficient parallel corpora: select parallel sentences from out-of-
domain parallel sentences by some criteria
o Cross-entropy by LM [Moore+, 2010; Axelrod+ 2011; Duh+, 2013]
o EM training algorithm [Hoang+, 2014]
o Convolutional neural network classifier [Chen+, 2016]
e |nsufficient parallel corpora: generate pseudo-parallel sentences by
some criteria
o [nformation retrieval [Utiyama+, 2003]
o Bilingual word embeddings [Marie and Fuijita, 2017]
o Generate parallel phrase pairs [Chu+, 2015; Wang+, 2016]

21



Example1: Cross-Entropy based Data Selection

Cross Entropy: The cross entropy for the distributions p and g over a given set is
defined as follows:

H(p,q)=E,[-log q]
Monolingual sentence selection criteria [Moore+ 2010]
HI (s) — HO(s)
Bilingual sentence selection criteria [Axelrod+ 2011]

[HI src(s)-HO _src(s)]+[HI _tgt(s)-HO tgt(s)]

22



Example 2: Phrase Generation [Wang+ 2016]

Phrase is a small and more fine grained unit for data selection

e Two phrases ‘would like to learn” and ‘Chinese as second language’ are in the
in-domain PT. In decoding, these two phrases may be connected together as
‘would like to learn Chinese as second language”

e The phrases ‘would like to learn Chinese’ or ‘learn Chinese as second

language’ may be used as the new generated n-gram LM or phrases in
phrase-table

23
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Model Centric

e Model level interpolation [Foster+, 2007; Bisazza+, 2011; Niehues+, 2012;
Sennrich+, 2013; Durrani+, 2015; Imamura+, 2016]
o Several SMT models, such as LIVs, translation, and reordering models,
corresponding to each corpus, are individually trained
o These models are then combined to achieve the best performance

e Instance level interpolation [Jiang+, (2007)]

o Firstly score each instance/domain by using rules or statistical methods
as a weight
o Then train SMT models by giving each instance/domain the weight

25



Model Level Interpolation

e |nterpolation [Foster+, 2007]
o Split the corpus into different components, according to some criterion
o Train a model on each corpus component
o \Weight each model according to its fit with the test domain
o Combine weighted component models into a single global model
e Fill-up [Bisazza et al., 2011]
o First, separate translation models are built from in-domain and

background data
o The background table is merged with the in-domain table by adding only
new phrase pairs that do not appear in the in-domain table

26



Instance Level Interpolation [Jiang+, 2007]

e Defined the domain adaptation problem in NLP as:

o Ps(X, y)and pyX, y): distributions for the source and the target domains
o Use p(X, y) to approximate p(X, y)

e In MT, simplify domain adaptation as:

Jaw = Xin Y _ logp(y[x) + > logp(y'[X).
(X7Y)6Din (X/,y/)EDout

In-domain weight
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RNN based NMT [Bahdanau+ 2015]
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Self-Attention Based NMT [Vaswani+ 2017]

Add & Norm
Feed Forward

Add & Norm

(" Diverse \:
: Multi-head
\__Strategy _,

Output Probabilities

Linear

Add & Norm

Feed Forward
Add & Norm

Multi-head
Attention

Input
Embedding

Positional Encoding

Nx

Source

Masked
Multi-head
Attention

Output
Embedding

Positional Encoding

Nx

Target
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Overview of Domain Adaptation for NMT [Chu+ 2018]

Domain

Adaptation \
= / i \

Training Objective Architecture Decoding
Centric Centric Centric
I Using monolingual corpora | l _L l
I Synthetic parallel corpora generation l r- - - —-—=-—°"r - = e _I
I I 1. Instance/cost weighting I | 1. Deep fusion I 1. Shallow fusion
Using out-of-domain parallel corpora: 2. Fine tuning 2. Domain discriminator I I 2. Ensembling
I 1. Multi-domain | I 3. Mixed fine tuning I | 3. Domain control

——————J I S S S E—

I 2. Data selection | |_4 Regularization I 31
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Target

—» RNNLM ——»

Source-Target

———» NMT ——»

——

—

—

LM

™

——

—

Translation

J

Target-Side RNNLM Fusion [Gulcehre+ 2015]

N
;

Model
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Target-Side Multi-task Learning [Domhan+ 2017]

RNN
St1 St "
N )
- N\
RNNy,
leq It
N J
Vi1 Vi1

(a) baseline (b) +LML

Y1

(c) +LML +MTL
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Results of Multi-task Learning [Domhan+ 2017]

System Data EN—DE FR—EN CS—EN

baseline 20.339.963.0 21.727.559.1 17.024.465.2
+ LML 20.439.863.1 21.327.259.8 169244654
+ LML + MTL + mono 21.440.861.4 22.327.7583 17.224.764.3
Sennrich et al. (2016) + synthetic 24.443.456.4 27.431.552.1 21.227.5594
ensemble baseline 22.241.6 60.6 23.929.156.4 18.325.563.0
+ LML 22.441.860.9 23.528.757.2 18.325.663.4
+ LML + MTL + mono 23.642.858.9 242292559 18.825.962.2
ensemble Sennrich et al. (2016) + synthetic 25.744.6 55.0 29.132.650.3 22.528.457.8

Table 1: BLEU/METEOR/TER scores on test sets for different language pairs. For BLEU and METEOR

higher is better. For TER lower is better.
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Source-Side Multi-task Learning [Zhang+ 2016]

reordered source-side sentence aligned
monolingual data bilingual data
XT 1 X2 x'Tx . }f V2 yr
S1 52& & STx i E Z1 sz & ZTy

reordering translation

______________________________________

E hy [<—1h, <— <« ETx
A = —F
T T j
! X1 Xy XTy :

36



Both Source and Target-Side with Autoencoder [Cheng+ 2016]

bushi yu shalong juxing le huitan X

Bush held a talk with Sharon

decoder ﬁ P(X/|y; <§)

decoder ﬁ P(y'|x;ﬁ)

Bush held a talk with Sharon y

bushi yu shalong juxing le huitan

encoder ﬁ P(y]x; ﬁ)

encoder ﬁ P(x|y; ?)

bushi yu shalong juxing le huitan X

Bush held a talk with Sharon

(a)

(b)
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Results of Autoencoder [Cheng+ 2016]

Training Data

Method CHTC T E| Direction | NISTO6 | NISTO2 | NISTO3 | NISTO4 | NISTOS
. 7 | x |/ | CoE |[3410 [3695 | 3680 | 3799 | 3533
sennrichetal- (2015) 151 /1 o | E_c | 1985 | 2883 | 2061 | 2054 | 19.17

[« | /| C—F [356I7 [ 38787 38327 | 38407 | 3645

- E—C | 1759 | 2399 | 1895 | 1885 | 1791
v o> [ C—E [350I7 38207 3700 [ 3816 | 3607

E—C | 2112 | 2952 | 2049 | 21.59"* | 19.97"

Either E or C can be used on both sides for either C->E or E->C
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Synthetic Parallel Corpora Generation [Sennrich+ 2016]

Target

—» Translate —»

Synthetic

Source-Target
—

NMT
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Bi-Directional Parallel Corpora Generation [Niu+ 2018]

ID Training Data TL—EN EN—TL | SW—EN EN—SW | DE—-EN EN—DE
U-1 | L1—>12 3199 3128 | 3260 3998 | 2951 230l
Target | U2 | L1512+ L1x—L2 2421  29.68 | 25.84 3829 | 3320 2541
better | U3 |11-12 +L1oL2% | 2213 2714 | 2489 3653 | 3089 2372
U4 | L1512 +L1+—L2 +L1—L2« | 2338 2931 | 2533 3746 | 3301 2505

L1=EN L2=TL L2=SW L2=DE
" B-1 | LloL2 3272 3166 | 3359  39.12| 2884 2245
Both B2 | L1612 + L1412 3290 3233 | 3370  39.68 | 29.17 2445
better | B3 |LieL2 +L2+6L1 | 3271 3110 3370 397 | 3171 2171
4 B4 | L1el2+L1x0L2+12+6L1 | 3325 3246 | 3423 3897 | 3043 2254
B-5 | L1&L2+L1+—L2+12+—L1 | 3341 3321 | 3411 4024 | 3183  24.61
B-5% | L1<yL2 + L1« L2 + L2+«—L1 | 3379 3297 | 34.15 4061 | 3194 2445
B-6* | L1312 + L1x—L2 + L2+ —L1 | 3450 3373 | 3488 4153 | 3249  25.20

Table 2: BLEU scores for uni-directional models (U-*) and bi-directional NMT models (B-*) trained
on different combinations of real and synthetic parallel data. Models in B-5* are fine-tuned from base
models in B-1. Best models in B-6* are fine-tuned from precedent models in B-5* and underscored
synthetic data is re-decoded using precedent models. Scores with largest improvement within each zone
are highlighted.



Synthetic Data by Lexicon Induction [Hu+ 2019]

Target Corpus

“«>

Induction o

GIZA++ Supervised Seed Lexicon
Out-of-domain |——| | Alignment - Volagen: styles
Parallel C p— \ —> | | \ i
arallel Corpus — Nets: web e In-domain
) ¥

{113 <= I

Unsupervised Seed Lexicon w* .H‘
. 4 “,'
In-domain GAN therapie: therapy ® . .
Unaligned Corpus =1 :> mudigkeit: tiredness L Pseudo-in-domain

Source Corpus
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Results of Synthetic Data by Lexicon Induction [Hu+ 2019]

Upper
bound

{

Medical | Subtitles | Law | Koran
Unadapted 7.43 549 | 4.10 2.52
Copy 13.28 6.68 | 5.32 3.22
BT 18.51 11.25 | 11.55 8.18
DALI-U 20.44 9.53 8.63 4.90
DALI-S 19.03 980 | 8.64 491
DALI-U+BT 24.34 13.35 | 13.74 8.11
DALI-GIZA++ 28.39 937 | 11.45 8.09
In-domain 46.19 27.29 | 40.52 | 19.40

Table 3: Comparison among different methods on
adapting NMT from IT to {Medical, Subtitles, Law,
Koran} domains, along with two oracle results
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Multi-Domain [Kobus+ 2016]

Source-Target Append out-of-domain
(out-of-domain) 7| tag (<2out-of-domain>)
w Train NMT }—) Model
%5 (mixed)
Source-Target | Append in-domain tag
(in-domain) (<2in-domain>) Oversample the smaller
e in-domain corpus




Data Selection [Wang+ 2017]

Sentence-1

Sentence-2

Sentence-n

Sentence-N

Embedding-1 Sentence-1
Embedding2 Sentence-2
_ Sentence Scoring Sentence-n
R by distance

Embedding-N Sentence-N

Sentence-Rank-1

Sentence-Rank-2
Data Selection
by threshold Sentence-Rank-n

Sentence-Rank-M

R
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Concatenation

Stacking

Different Multi-Domain Approaches [Sajjad+ 2017]

........................................................................

Selection

Neural MT

Ensemble

47



Results of Multi-Domain Approaches [Sajjad+ 2017]

Fine-tuning
Arabic-English
ALL |OD—TED| UN—OPUS—TED
tst13  36.1 37.9 36.8
tstl4  30.2 32.1 31.2
avg.  33.2 35.0 34.0
German-English
ALL | OD—TED EP—CC—TED
tst13  35.7 38.1 36.8
tst14  30.8 32.8 31.7
avg. 333 354 34.3

Table 4: Stacking versus concatenation

Arabic-English  German-English

ALL  Selected | ALL  Selected
tst13  36.1 32.7 35.7 34.1
tstl4  30.2 27.8 30.8 29.9
avg. 33.2 30.3 33.3 32.0

Arabic-English

OPUS ALL | ENS,; ENS.,
tst13 32.2 36.1 31.9 34.3
tst14 27.3 30.2 25.8 28.6
avg. 29.7 33.2 28.9 31.5

Table 6: Comparing results of balanced ensemble
(ENSp) and weighted ensemble (ENS,,) with the
best individual model and the concatenated mode],
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Sentence Weighting [Wang+ 2017]

Sentence-1

Sentence-2

Sentence-n

Sentence-N

Sentence-1

Sentence-2

{

Sentence Scoring
by cross-entropy

| Sentence-n

Sentence-N

Sentence-1

Sentence-2

Instance Sentence-n
L —
Weighting

L
T

Sentence-N
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Sentence Selection and Weighting [Wang+ 2018]

sentence selection
is a special case of
sentence
weighting, i.e., the
sentences with
low-weights are cut
off

<

Entire Corpus Structure Sentence Weight

Out-of-domain

In-domain Sentence Sentence

Original

Sentence
Weighting

Sentence

Col,

Jl il

High = Low
[

DOREMERARE DRZEEMEIRGEENN AAAAARAMERERE

Mini-Batch Structure Sentence Weight

. Out-of-domain
In-domain Sentence Sentence

Original | — |
S

Sentence
Weighting ™

\Domain
Weighting =~

-]
—
—
EE—
—
—
R
S
L -]
E—

High = Low
[

J L I

DNNANERN cecicell MEAREAN  RNRANDANN

the weights are set
to be the same

balance the ratio of
the in-domain and
out-of-domain datas:




Results of sentence Selection and Weighting [wang+ 2018]

IWSLT EN-FR devl10 test10 testl 1
mn 27.66 32.11 35.22
out 24.93 29.60 32.27
m + out 25.14 29.94 33.50
ensemble (zn + out) 28.48 33.63 37.67
sampler 28.67 34.12 38.08
Kobus [54] 27.87 33.81 37.44
Axelrod [35] 27.85 34.03 38.30
sentence selection (Jge) 29.38+ 35.57++ | 39.20++
sentence weighting 29.14+ 34.80+ 38.73
batch weighting 29.814++ | 35.54++ | 39.48++
sentence scoring+sentence weighting | 29.97++ | 35.64++ | 40.17++
sentence selection+batch weighting 30.17++ | 36.03++ | 40.59++
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Fine Tuning [Luong+ 2015; Sennrich+ 2016; Servan+ 2016; Freitag+ 2016]

Source-Target
i Model
of-domain) |~ > Train NMT }—>
(out-of-domain) | | o

y

Source-Target |
, } Model
-~ : Train NMT
(in-domain) ] (in-domain)
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Effects of Components in Fine Tuning [Thompson+ 2018]
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Prevent Out-of-domain Translation Degradation [Dakwale+ 2017]
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Curriculum Learning [Zhang+ 2019]
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Mixed Fine Tuning [Chu+ 2017]

Source-Target
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Multilingual and Multi-Domain [Chu+ 2018]
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Experimental Settings

e MT tasks
Corpus (domain) train dev test
In-domain ALT-JE (Wikinews) [Thu+ 2016] 18k 1,000 1,018
KFTT-JE (Wiki-Kyoto) [Neubig+ 2011] 440k 1,166 1,160
Out-of-domain  |\s|T-JE (spoken) [Gettolo+ 2015] 223k 871 1,549
IWSLT-CE (spoken) [Gettolo+ 2015] 209k 887 1,570

e MT systems
o SMT: Moses [Koehn+ 2007]
o NMT: Transformer [Vaswani+ 2017]
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Results on ALT-JE Without Domain Adaptation
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Domain Adaptation Results on ALT-JE
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Translation Examples

Input: ¥ RZ—DOZV RO« v IBESOSHEOYZ 7 LY REBEENEAIVT7ILTY
HFICREPELTWVD Z EDERSE N,

Reference: it has been confirmed that eight thoroughbred race horses at randwick
racecourse in sydney have been infected with equine influenza.

NMT baseline: the thoroughbred has been confirmed to be infected with the kurawicked
when the thoroughbred was infected.

Fine tuning: it was confirmed that the eight main randwick service predominantly was
infected by horse flu.

Multi-domain: sydney's eight horsthoroughbourghbours were confirmed to be infected
with influenza at the horse.

Mixed fine tuning: it was confirmed that the eight thoroughbred horse racing at the
sydney's randowic race course was infected with horse flu.
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Deep Fusion (1/2) [Gulcehre+ 2015]

RNNLM and NMT models
are trained separately
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Deep Fusion (2/2) [Domhan+ 2017]
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Domain Discriminator [Britz+ 2017]
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Word-Level Domain Discriminator [Zeng+ 2018]
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Multiple Encoders and Decoders [Gu+ 2019]
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Results of Multiple Encoders and Decoders [Gu+ 2019]

En-Zh dev test average En-De test06 | test07 | average
In 32.45 30.42 31.44 In 2336 | 25.00 | 24.18
_ Out + In 30.37 28.76 29.57 Out + In 20.69 22.43 21.56
g/lour:;in {1Sampler 3506 | 3297 | 34.02 Sampler 26.83 | 29.01 | 27.92
Fine Tune 35.02 33.36 34.19 Fine Tune 27.02 | 29.19 | 28.11
Tag <:|DC 31.08 20.59 30.34 our method | 27.97* | 30.67** | 29.32
[Bl’i tr+ DM 30.98 29.73 30.36 Tab}e 2: Results of the WMT 07 en-de translation ex-
2017] TTM 31.77 | 30.11 | 30.94 periments.
ADM 31.23 29.88 30.56
our method | 36.55%* | 34.84** | 35.70

Table 1: Results of the en-zh translation experiments. -
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Domain Control [Kobus+ 2016]

OO00O0 OOO00J0OO0)

J

\

|

Y
& Word feature

SI‘C: Headache |[MED may |MED be|MED experienced|MED

Trg: Des céphalées peuvent survenir

Src:  Headache may be experienced @MEDQ@

Tgt: Des céphalées peuvent survenir
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Extreme Adaptation [Michel+ 2018]

Source

Translation

O

I went home

[Man]: Je suis rentré a la maison
[Woman]: Je suis rentrée a la maison

I do drug testing

[Doctor]: Je teste des médicaments
[Police]: Je dépiste des drogues

O

Table 1: Examples where speaker information in-

fluences English-French translation.

@0’
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I
©

Global parameters

il-
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- Decoder output
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Results of Extreme Adaptation [Michel+ 2018]

en-fr en-es en-de
base 38.05 39.89 2646
spk_token 38.85 40.04 26.52
full_bias 38.54 4030 27.20
fact_bias 39.01 39.88 26.94

18.0
Spanish 13.8
P 12.8
18.2
German 15.7
15.1
19.5
French 14.9
15.4

0% 5% 10% 15% 20%
Breference mfull_bias DOfact_bias Obase

Figure 2: Speaker classification accuracy of our
continuous bag-of-n-grams model.
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Shallow Fusion [Gulcehre+ 2015]
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Ensembling [Freitag+ 2016]
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Neural Lattice Search [Khayrallah+ 2017]

Search Graph
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Sentence Retrieve Based Model [Li+ 2016]
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Post-edit for Online Domain Adaptation [Turchi+ 2017]

PE-based update

l

e L -l

IR-based
G < update
Src
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—> tgt —b< Post-edit >—> (src, pe)
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Datasets and Resources

Studies

Language pairs

In-domain corpora

Out-of-domain corpora

Wang et al. [114, 115, 116]
Chu et al. [19]

Chen et al. [11]

Michel and Neubig [79]
van der Wees et al. [110]

Zhang et al. [130]
Farajian et al. [33]
Zhang et al. [130]
Gu et al. [42]

En-De & En-Fr

Zh-En
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Zh-En
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Multi-stage Learning [Dabre+ 2019]

Pre-training
(Pre)

__________________

i Pre-train
i NMT Model

A 4

Fine-tune ]

NMT Model

Fine-tune
NMT Model

A 4

En'YYk
Model
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or fine-tuning (Mix) (Pure)

______________________________________
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Results of Multi-stage Learning [Dabre+ 2019]

4 I xx | N Model Training configuration YY test set

capacity | Pre Mix Pure Bn TI Id Ja Km Ms Vi
1. | - 1 T-to-1 | - _ v 3.99 24.04 2410 11.03 2253 2985 27.39
2. Zh | 1 [t02 | v - v 8.86° 27.54% 27.10° 19.07°7 2841° 32.52F 34.63°
3.1 zh | 1 1-to-2 | - v v 490  23.07 2337 13.97% 26.13* 2924 29.82*
4.1 7Zh | 1 l-t02 | v v v 7.99%  26.61* 25.62* 18.39* 27.49* 31.63* 34.22*
5.1 Zh | 7 1-t0-8 | vV - v 8.54% 2688F 26.02F 18.99% 27.07° 3239 33.32°
6. | Zh | 7 1-t0-8 | - v v 9.43* 2586" 26.33* 19.34* 26.86 32.39* 33.28*
7.1 Zh | 7 1-t0-8 | v v v 10.30% 7728221 27.24*T 20.08*+1 28.66*" 33.19*T735.34**1
2. Ja | 1 1-t0-2 | v - v 9.16° 28.06° 2653° 21.55° 27.98% 33.68° 33.937
3.0 Ja | 1 1-to-2 | - v v 437 2291 2337 1647 2336%x 29.28 29.10%
4. | Ja | 1 1-t0-2 | v v v 8.77° 26.64* 25.88* 21.61* 27.55% 3245 34.29*
5.1 Ja | 7 108 | v - v 9.43% 27.45% 26.70° 21.79% 27.87F 32.92F 34287
6. | Ja | 7 1-t0-8 | - v v 9.96*T 2839* 27.22*F 21.03* 28.91*" 33.75* 36.00*T
7.1 Ja | 7 1-t0-8 | v v v 10777 28.62* " 28.89* 1 122.60*1730.03* 734,757 737.06" 7
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Domain Adaptation for Unsupervised NMT

Scenarios for unsupervised NMT ate different from supervised NMT

Scenarios Abbreviation L in-domain L9 in-domain [L; out-of-domain L9 out-of-domain
Monol; | 17 v v X X
) ono‘mguacl1 corpo‘ra 00 > v 7 7
rom same domains 7700 7 7 7 7
Monolingual corpora [00 ~ v Y vy
fir mdiffgr ntdrin ins 19 v v v a
© crent comains = O X v v X




Some Initial Results [Sun+ 2019]

Scenario  Supervision Method De-En En-De Fr-En En-Fr
P test2012  test2013  test2012  test2013  test2010  test2011  test2010  test2011
17 Yes Wang et al. (2018) n/a n/a 23.07 25.40 n/a n/a 32.11 35.22 1
Base 33.68 3541 2809 3048 363  40.07 3643 3758 2
11 Base 2442 2565 2199 2272 2594 2973 2532  27.06 3
00 No Raco 2101 21 6A 1008 Q.00 2408 0% 77 23.08 26.08 4
1100 no | EXisting domain adaptation methods still work ~ |2635 3012 s
: - : : 2908 3367 6
but perform differently in different scenarios

100 No 25.18 2873 7
FT 2275 2314 2109 2178 2837 3357 2616  30.14 8
110 No Base 1,11 1030  11.54 1195  17.88 2032 1702 1816 9
FT+BW 26.12 2733 2263 2372 2788 3216 2542 2805 10
0 N Base 1079 1077 1144 1182 1800 2091 1619  16.84 11
© BW 1778 1800 1601 1660 2253 2529 2004 2212 12

BW: batch weighting
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Conclusion

Data Centric

Synthetic parallel corpora generation

1. Multi-domain
I 2. Data selection

Using out-of-domain parallel corpora:

Domain
Adaptation

Model Centric

l

Training Objective Architecture Decoding
Centric Centric Centric
IR S S

I 1. Shallow fusion I
2. Domain discriminator I I 2. Ensembling

I | 3. Domain control
— — — — — — -

I 1. Instance/cost weighting I | 1. Deep fusion
2. Fine tuning

3. Mixed fine tuning
li Regularization I
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