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Domain Adaptation

● Transfer learning: use of source domain Ds and source 
task Ts to improve the effect of target domain Dt and 
target task Tt 

● The information of Ds and Ts is transferred to Dt and Tt 

● Domain adaptation: a type of isomorphic transfer learning 
where Ts = Tt
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Why do We Need Domain Adaptation? [Jiang+, 2007; Chang+ 2009]  

● In-domain training data is small 
● Different distributions 

○ P(x): The distribution of training and testing data are different  
○ P(y|x): With the same example, the label are different in different 

domains 
● Unknown words 

○ There are many unseen words in the new domain 
● New Types 

○ There are new types in the new domain (e.g., now predicting locations)

!5



Domain Adaptation in Machine Translation:  

● Ds: out-of-domain information (data, model etc.) 
● Dt: in-domain information (data, model etc.) 
● Ts = Tt: machine translation (statistical, neural etc.)

In this tutorial, we focus on empirical methods instead of 
mathematics and most of the references can be found at:  

A Survey of Domain Adaptation for Neural Machine 
Translation, Chu and Wang, COLING-2018
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Machine Translation

● Translation: to break the barrier between different cultures: 

● Machine Translation: a classic NLP/AI task 

○ MT is a typical text generation task. 

○ MT has standard evaluation Metrics.
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Statistical Machine Translation [Koehn, 2007] 

T(f) =  ˆe = argmaxe P(e) P(f|e)
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Workflow of SMT
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Toolkit: Moses [Koehn, 2007] 
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SMT vs NMT
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SMT NMT



Phrase Table (Translation Model) in SMT 

four different phrase translation scores are computed: 
1. inverse phrase translation probability φ(f|e) 
2. inverse lexical weighting lex(f|e) 
3. direct phrase translation probability φ(e|f) 
4. direct lexical weighting lex(e|f)
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Bilingual Word Embedding
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Language Model

Format (example)

● A language model (LM) is a model that assigns a probability to a sentence. 
● N-gram LM 

3-grams 
-1.4910358      <s> I am 
-1.1888235      I am a 
-0.6548149      a boy . 
-1.1425415      . </s>  0

2-grams 
-1.7037368      <s> I   
-3.1241505      a boy   
-1.9892355      am a    
-1.0562452      boy .   
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Neural Network Language Model

!16RNNLM [Mikolov, 2012]Continuous-space LM (CSLM) 
or NNLM [Schwenk, 2010]



Decoding in SMT
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Decoding in NMT

!18
[Zhang and Wang et al., 2010]



Domain Adaptation for Machine Translation

1. Data Centric 
2. Model Centric
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Data Selection/Generation for SMT

● Sufficient parallel corpora: select parallel sentences from out-of-
domain parallel sentences by some criteria 
○ Cross-entropy by LM [Moore+, 2010; Axelrod+ 2011; Duh+, 2013] 

○ EM training algorithm [Hoang+, 2014] 

○ Convolutional neural network classifier [Chen+, 2016] 

● Insufficient parallel corpora: generate pseudo-parallel sentences by 
some criteria 
○ Information retrieval [Utiyama+, 2003] 

○ Bilingual word embeddings [Marie and Fujita, 2017] 

○ Generate parallel phrase pairs [Chu+, 2015; Wang+, 2016]
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Example1: Cross-Entropy based Data Selection

Cross Entropy: The cross entropy for the distributions p and q over a given set is 
defined as follows:  

H(p,q)=Ep[-log q] 

Monolingual sentence selection criteria [Moore+ 2010] 

HI (s) − HO(s) 

Bilingual sentence selection criteria [Axelrod+ 2011] 

[HI_src(s)−HO_src(s)]+[HI_tgt(s)−HO_tgt(s)]

!22



Example 2: Phrase Generation [Wang+ 2016]

Phrase is a small and more fine grained unit for data selection  
● Two phrases ‘would like to learn’ and ‘Chinese as second language’ are in the 

in-domain PT. In decoding, these two phrases may be connected together as 
‘would like to learn Chinese as second language” 

● The phrases ‘would like to learn Chinese’ or ‘learn Chinese as second 
language’ may be used as the new generated n-gram LM or phrases in 
phrase-table
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Model Centric 

● Model level interpolation [Foster+, 2007; Bisazza+, 2011; Niehues+, 2012; 
Sennrich+, 2013; Durrani+, 2015; Imamura+, 2016] 
○ Several SMT models, such as LMs, translation, and reordering models, 

corresponding to each corpus, are individually trained 
○ These models are then combined to achieve the best performance 

● Instance level interpolation [Jiang+, (2007)] 

○ Firstly score each instance/domain by using rules or statistical methods 
as a weight 

○ Then train SMT models by giving each instance/domain the weight
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Model Level Interpolation

● Interpolation [Foster+, 2007] 

○ Split the corpus into different components, according to some criterion 
○ Train a model on each corpus component 
○ Weight each model according to its fit with the test domain 
○ Combine weighted component models into a single global model 

● Fill-up [Bisazza et al., 2011] 

○ First, separate translation models are built from in-domain and 
background data 

○ The background table is merged with the in-domain table by adding only 
new phrase pairs that do not appear in the in-domain table
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Instance Level Interpolation [Jiang+, 2007] 

● Defined the domain adaptation problem in NLP as: 

○ ps(x, y) and pt(x, y): distributions for the source and the target domains 

○ Use ps(x, y) to approximate pt(x, y) 

● In MT, simplify domain adaptation as: 
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RNN based NMT [Bahdanau+ 2015]
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Self-Attention Based NMT [Vaswani+ 2017] 
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Overview of Domain Adaptation for NMT [Chu+ 2018] 
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Target-Side RNNLM Fusion [Gulcehre+ 2015]
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Target-Side Multi-task Learning [Domhan+ 2017]
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Results of Multi-task Learning [Domhan+ 2017]
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Source-Side Multi-task Learning [Zhang+ 2016]
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Both Source and Target-Side with Autoencoder [Cheng+ 2016] 
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Results of Autoencoder [Cheng+ 2016]

Either E or C can be used on both sides for either C->E or E->C
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Synthetic Parallel Corpora Generation [Sennrich+ 2016]
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Bi-Directional Parallel Corpora Generation [Niu+ 2018] 

Target 
better

Both 
better
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Synthetic Data by Lexicon Induction [Hu+ 2019]
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Results of Synthetic Data by Lexicon Induction [Hu+ 2019]

Upper 
bound
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Multi-Domain [Kobus+ 2016]

!45



Data Selection [Wang+ 2017]
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Different Multi-Domain Approaches [Sajjad+ 2017] 
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Results of Multi-Domain Approaches [Sajjad+ 2017]
Fine-tuning
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Sentence Weighting [Wang+ 2017]
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Sentence Selection and Weighting [Wang+ 2018]

sentence selection 
is a special case of 
sentence 
weighting, i.e., the 
sentences with 
low-weights are cut 
off

the weights are set 
to be the same

balance the ratio of 
the in-domain and 
out-of-domain data !52



Results of sentence Selection and Weighting [Wang+ 2018]
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Fine Tuning [Luong+ 2015; Sennrich+ 2016; Servan+ 2016; Freitag+ 2016]
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Effects of Components in Fine Tuning [Thompson+ 2018]

 Any single component has little impact on the performance
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Prevent Out-of-domain Translation Degradation [Dakwale+ 2017] 

Fine-tuning parameters of 
teacher network are frozen 

The additional 
layer is trained 
wrt distribution 
from teacher 
network 
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Curriculum Learning [Zhang+ 2019]

Data Selection

!58



Outline

1. Brief Introduction of Domain Adaptation 
2. Domain Adaptation for SMT 
3. Domain Adaptation for NMT 

a. Data Centric 
b. Model Centric 

i. Training Objective Centric: Mixed Fine Tuning 
ii. Architecture Centric 
iii. Decoding Centric 

4. Domain Adaptation in Specific Scenarios 
5. Datasets and Resources 
6. Future Directions

!59



Mixed Fine Tuning [Chu+ 2017]
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Multilingual and Multi-Domain [Chu+ 2018]
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Experimental Settings

● MT tasks 

● MT systems  
○ SMT: Moses [Koehn+ 2007] 
○ NMT: Transformer [Vaswani+ 2017]
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Results on ALT-JE Without Domain Adaptation
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Domain Adaptation Results on ALT-JE
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Translation Examples
● Input: シドニーのランドウィック競⾺馬場の８頭のサラブレッド競⾛走⾺馬が⾺馬インフルエン
ザに感染していることが確認された。 

● Reference: it has been confirmed that eight thoroughbred race horses at randwick 
racecourse in sydney have been infected with equine influenza. 

● NMT baseline: the thoroughbred has been confirmed to be infected with the kurawicked 
when the thoroughbred was infected. 

● Fine tuning: it was confirmed that the eight main randwick service predominantly was 
infected by horse flu. 

● Multi-domain: sydney's eight horsthoroughbourghbours were confirmed to be infected 
with influenza at the horse. 

● Mixed fine tuning: it was confirmed that the eight thoroughbred horse racing at the 
sydney's randowic race course was infected with horse flu.
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Deep Fusion (1/2) [Gulcehre+ 2015]

RNNLM and NMT models 
are trained separately
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Deep Fusion (2/2) [Domhan+ 2017]
RNNLM and NMT models 
are trained jointly
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Domain Discriminator [Britz+ 2017]

FFNN
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Word-Level Domain Discriminator [Zeng+ 2018]
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Multiple Encoders and Decoders [Gu+ 2019]
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Results of Multiple Encoders and Decoders [Gu+ 2019]
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[Britz+ 
2017]

Multi- 
domain

Tag
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Domain Control [Kobus+ 2016]
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Extreme Adaptation [Michel+ 2018]

full_bias

factor_bias
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Results of Extreme Adaptation [Michel+ 2018]
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Shallow Fusion [Gulcehre+ 2015]
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Ensembling [Freitag+ 2016]
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Neural Lattice Search [Khayrallah+ 2017]
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Input Domain Unknown
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Sentence Retrieve Based Model [Li+ 2016]
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Similarity search
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Post-edit for Online Domain Adaptation [Turchi+ 2017] 
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GM: general model 
LM: local (in-domain) model
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Datasets and Resources
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Multi-stage Learning [Dabre+ 2019]
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Results of Multi-stage Learning [Dabre+ 2019]
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Domain Adaptation for Unsupervised NMT

Scenarios for unsupervised NMT ate different from supervised NMT
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Some Initial Results [Sun+ 2019]

!94
BW: batch weighting

Existing domain adaptation methods still work 
but perform differently in different scenarios



Conclusion
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