Domain Adaptation for Neural Machine Translation

Chenhui Chu Osaka University Rui Wang NICT

CCMT 2019 @ Nanchang September 27th, 2019

- 1. Brief Introduction of Domain Adaptation (Wang)
- 2. Domain Adaptation for SMT (Wang)
- 3. Domain Adaptation for NMT (Chu)
- 4. Domain Adaptation in Specific Scenarios (Wang)
- 5. Datasets and Resources (Wang)
- 6. Future Directions (Wang)

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Domain Adaptation

- Transfer learning: use of source domain *Ds* and source task *Ts* to improve the effect of target domain *Dt* and target task *Tt*
- The information of *Ds* and *Ts* is transferred to *Dt* and *Tt*
- Domain adaptation: a type of isomorphic transfer learning where Ts = Tt

Why do We Need Domain Adaptation? [Jiang+, 2007; Chang+ 2009]

- In-domain training data is small
- Different distributions
 - \circ P(x): The distribution of training and testing data are different
 - P(y|x): With the same example, the label are different in different domains
- Unknown words
 - \circ $\,$ There are many unseen words in the new domain
- New Types
 - There are new types in the new domain (e.g., now predicting locations)

Domain Adaptation in Machine Translation:

- *Ds*: out-of-domain information (data, model etc.)
- *Dt*: in-domain information (data, model etc.)
- *Ts* = *Tt*: machine translation (statistical, neural etc.)

In this tutorial, we focus on empirical methods instead of mathematics and most of the references can be found at:

A Survey of Domain Adaptation for Neural Machine Translation, Chu and Wang, COLING-2018

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Machine Translation

• Translation: to break the barrier between different cultures:

Туре	Characteristics
Human Translation	Accurate but time-consuming
Machine Translation	Scalable but less accurate

- Machine Translation: a classic NLP/AI task
 - MT is a typical text generation task.
 - MT has standard evaluation Metrics.

- Reference Translation
 - the gunman was shot to death by the police .
- System Translations
 - the gunman was police kill .
 - wounded police jaya of
 - the gunman was shot dead by the police .
 - the gunman arrested by police kill .
 - the gunmen were killed .
 - the gunman was shot to death by the police .
 - gunmen were killed by police ?SUB>0 ?SUB>0
 - al by the police .
 - the ringer is killed by the police .
 - police killed the gunman .
- Matches
 - green = 4 gram match (good!)
 - red = word not matched (bad!)

Statistical Machine Translation [Koehn, 2007]

Components: Translation model, language model, decoder

 $T(f) = e = argmax_e P(e) P(f|e)$

Workflow of SMT

IBM Model 4

Toolkit: Moses [Koehn, 2007]

Moses

Software

Operating system: Windows, Linux, macOS

Stable release: 4.0 / October 5, 2017; 22 months ago

License: LGPL

Written in: C++, Perl

SMT vs NMT

Components: Translation model, language model, decoder

NMT

Phrase Table (Translation Model) in SMT

> grep '| in europe |' model/phrase-table | sort -nrk 7 -t\| | head in europa ||| in europe ||| 0.829007 0.207955 0.801493 0.492402 europas ||| in europe ||| 0.0251019 0.066211 0.0342506 0.0079563 in der europaeischen union ||| in europe ||| 0.018451 0.00100126 0.0319584 0.0196869 in europa , ||| in europe ||| 0.011371 0.207955 0.207843 0.492402 europaeischen ||| in europe ||| 0.00686548 0.0754338 0.000863791 0.046128 im europaeischen ||| in europe ||| 0.00579275 0.00914601 0.0241287 0.0162482 fuer europa ||| in europe ||| 0.00493456 0.0132369 0.0372168 0.0511473 in europa zu ||| in europe ||| 0.00386183 0.0114416 0.352941 0.118441 der europaeischen ||| in europe ||| 0.00343274 0.00141532 0.00099583 0.000512159

- 1. inverse phrase translation probability $\varphi(f|e)$
- 2. inverse lexical weighting *lex(f|e)*
- 3. direct phrase translation probability $\varphi(e|f)$
- 4. direct lexical weighting *lex(e|f)*

Bilingual Word Embedding

Bilingual Word Embedding

Monolingual Word Embedding

Language Model

- A language model (LM) is a model that assigns a probability to a sentence.
- *N*-gram LM

In an *n*-gram model, the probability $P(w_1,\ldots,w_m)$ of observing the sentence w_1,\ldots,w_m is approximated as

$$P(w_1,\ldots,w_m) = \prod_{i=1}^m P(w_i \mid w_1,\ldots,w_{i-1}) pprox \prod_{i=1}^m P(w_i \mid w_{i-(n-1)},\ldots,w_{i-1})$$

Format (example)						
2-grams		3-grams				
-1.7037368	<s> [</s>	-1.4910358	<s>I am</s>			
-3.1241505	a boy	-1.1888235	I am a			
-1.9892355	am a	-0.6548149	a boy .			
-1.0562452	boy.	-1.1425415	. 0			

Neural Network Language Model

Continuous-space LM (CSLM) or NNLM [Schwenk, 2010]

RNNLM [Mikolov, 2012]

Decoding in SMT

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - *foreign word coverage* vectors match (effects future path)

Decoding in NMT

[Zhang and Wang et al., 2010]

Domain Adaptation for Machine Translation

- 1. Data Centric
- 2. Model Centric

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
 - a. Data Centric
 - b. Model Centric
- 3. Domain Adaptation for NMT
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Data Selection/Generation for SMT

- Sufficient parallel corpora: select parallel sentences from out-ofdomain parallel sentences by some criteria
 - Cross-entropy by LM [Moore+, 2010; Axelrod+ 2011; Duh+, 2013]
 - EM training algorithm [Hoang+, 2014]
 - Convolutional neural network classifier [Chen+, 2016]
- Insufficient parallel corpora: generate pseudo-parallel sentences by some criteria
 - Information retrieval [Utiyama+, 2003]
 - Bilingual word embeddings [Marie and Fujita, 2017]
 - Generate parallel phrase pairs [Chu+, 2015; Wang+, 2016]

Example1: Cross-Entropy based Data Selection

Cross Entropy: The cross entropy for the distributions *p* and *q* over a given set is defined as follows:

 $H(p,q)=E_p[-log q]$

Monolingual sentence selection criteria [Moore+ 2010]

HI (s) – *HO*(s)

Bilingual sentence selection criteria [Axelrod+ 2011]

[HI_src(s)-HO_src(s)]+[HI_tgt(s)-HO_tgt(s)]

Example 2: Phrase Generation [Wang+ 2016]

Phrase is a small and more fine grained unit for data selection

- Two phrases 'would like to learn' and 'Chinese as second language' are in the in-domain PT. In decoding, these two phrases may be connected together as 'would like to learn Chinese as second language"
- The phrases 'would like to learn Chinese' or 'learn Chinese as second language' may be used as the new generated *n*-gram LM or phrases in phrase-table

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
 - a. Data Centric

b. Model Centric

- 3. Domain Adaptation for NMT
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

- Model level interpolation [Foster+, 2007; Bisazza+, 2011; Niehues+, 2012; Sennrich+, 2013; Durrani+, 2015; Imamura+, 2016]
 - Several SMT models, such as LMs, translation, and reordering models, corresponding to each corpus, are individually trained
 - These models are then combined to achieve the best performance
- Instance level interpolation [Jiang+, (2007)]
 - Firstly score each instance/domain by using rules or statistical methods as a weight
 - Then train SMT models by giving each instance/domain the weight

Model Level Interpolation

- Interpolation [Foster+, 2007]
 - Split the corpus into different components, according to some criterion
 - Train a model on each corpus component
 - Weight each model according to its fit with the test domain
 - Combine weighted component models into a single global model
- Fill-up [Bisazza et al., 2011]
 - First, separate translation models are built from in-domain and background data
 - The background table is merged with the in-domain table by adding only new phrase pairs that do not appear in the in-domain table

Instance Level Interpolation [Jiang+, 2007]

- Defined the domain adaptation problem in NLP as:
 - \circ p_s(x, y) and p_t(x, y): distributions for the source and the target domains
 - Use $p_s(x, y)$ to approximate $p_t(x, y)$
- In MT, simplify domain adaptation as:

$$J_{dw} = \lambda_{in} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_{in}} logp(\mathbf{y}|\mathbf{x}) + \sum_{(\mathbf{x}', \mathbf{y}') \in \mathcal{D}_{out}} logp(\mathbf{y}'|\mathbf{x}').$$

In-domain weight

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

RNN based NMT [Bahdanau+ 2015]

Self-Attention Based NMT [Vaswani+ 2017]

30

Overview of Domain Adaptation for NMT [Chu+ 2018]

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
 - a. Data Centric
 - i. Using Monolingual Corpora
 - ii. Synthetic Parallel Corpora Generation
 - iii. Using Out-of-Domain Parallel Corpora
 - b. Model Centric
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Target-Side RNNLM Fusion [Gulcehre+ 2015]

Target-Side Multi-task Learning [Domhan+ 2017]

Results of Multi-task Learning [Domhan+ 2017]

System	Data	EN→DE	$FR \rightarrow EN$	CS→EN
baseline		20.3 39.9 63.0	21.7 27.5 59.1	17.0 24.4 65.2
+ LML		20.4 39.8 63.1	21.3 27.2 59.8	16.9 24.4 65.4
+ LML + MTL	+ mono	21.4 40.8 61.4	22.3 27.7 58.3	17.2 24.7 64.3
Sennrich et al. (2016)	+ synthetic	24.4 43.4 56.4	27.4 31.5 52.1	21.2 27.5 59.4
ensemble baseline		22.2 41.6 60.6	23.9 29.1 56.4	18.3 25.5 63.0
+ LML		22.4 41.8 60.9	23.5 28.7 57.2	18.3 25.6 63.4
+ LML + MTL	+ mono	23.6 42.8 58.9	24.2 29.2 55.9	18.8 25.9 62.2
ensemble Sennrich et al. (2016)	+ synthetic	25.7 44.6 55.0	29.1 32.6 50.3	22.5 28.4 57.8

Table 1: BLEU/METEOR/TER scores on test sets for different language pairs. For BLEU and METEOR higher is better. For TER lower is better.

Source-Side Multi-task Learning [Zhang+ 2016]

Both Source and Target-Side with Autoencoder [Cheng+ 2016]

37

Results of Autoencoder [Cheng+ 2016]

Method	Training Data		Direction	NIST06	NISTO2	NIST03	NIST04	NIST05	
ivictilou	CE	C	E	Direction	115100	110102	115105		115105
Sammich at al. (2015)		×		$C \rightarrow E$	34.10	36.95	36.80	37.99	35.33
Seminich et al. (2013)			×	$E \rightarrow C$	19.85	28.83	20.61	20.54	19.17
this work	\checkmark	×	\checkmark	$C \rightarrow E$	35.61**	38.78**	38.32**	38.49*	36.45**
				$E \rightarrow C$	17.59	23.99	18.95	18.85	17.91
	\checkmark	\checkmark	×	$C \rightarrow E$	35.01**	38.20**	37.99**	38.16	36.07**
				$E \rightarrow C$	21.12**	29.52**	20.49	21.59**	19.97**

Either E or C can be used on both sides for either C->E or E->C

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
 - a. Data Centric
 - i. Using Monolingual Corpora
 - ii. Synthetic Parallel Corpora Generation
 - iii. Using Out-of-Domain Parallel Corpora
 - b. Model Centric
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Synthetic Parallel Corpora Generation [Sennrich+ 2016]

	ID	Training Data	$TL \rightarrow EN$	$EN \rightarrow TL$	$SW \rightarrow EN$	$\text{EN} \rightarrow \text{SW}$	$DE \rightarrow EN$	$EN \rightarrow DE$
Γ	U-1	L1→L2	31.99	31.28	32.60	39.98	29.51	23.01
Target	U-2	$L1 \rightarrow L2 + L1 \star \rightarrow L2$	24.21	29.68	25.84	38.29	33.20	25.41
oetter U-3 U-4	U-3	$L1 \rightarrow L2 + L1 \rightarrow L2 *$	22.13	27.14	24.89	36.53	30.89	23.72
	U-4	$L1 \rightarrow L2 + L1 \star \rightarrow L2 + L1 \rightarrow L2 \star$	23.38	29.31	25.33	37.46	33.01	25.05
		L1=EN	L2=	=TL	L2=	=SW	L2=	=DE
	B-1	$L1\leftrightarrow L2$	32.72	31.66	33.59	39.12	28.84	22.45
Both B-2 B-3 B-4	B-2	$L1 \leftrightarrow L2 + L1 \star \leftrightarrow L2$	32.90	32.33	33.70	39.68	29.17	24.45
	B-3	$L1 \leftrightarrow L2 + L2 \star \leftrightarrow L1$	32.71	31.10	33.70	39.17	31.71	21.71
	B-4	$L1 \leftrightarrow L2 + L1 \star \leftrightarrow L2 + L2 \star \leftrightarrow L1$	33.25	32.46	34.23	38.97	30.43	22.54
	B-5	$L1 \leftrightarrow L2 + L1 \star \rightarrow L2 + L2 \star \rightarrow L1$	33.41	33.21	34.11	40.24	31.83	24.61
	B-5*	$L1 \leftrightarrow L2 + L1 \star \rightarrow L2 + L2 \star \rightarrow L1$	33.79	32.97	34.15	40.61	31.94	24.45
	B-6*	$L1 \leftrightarrow L2 + \underline{L1} \star \rightarrow L2 + \underline{L2} \star \rightarrow L1$	34.50	33.73	34.88	41.53	32.49	25.20

Bi-Directional Parallel Corpora Generation [Niu+ 2018]

Table 2: BLEU scores for uni-directional models (U-*) and bi-directional NMT models (B-*) trained on different combinations of real and synthetic parallel data. Models in B-5* are fine-tuned from base models in B-1. Best models in B-6* are fine-tuned from precedent models in B-5* and underscored synthetic data is re-decoded using precedent models. Scores with largest improvement within each zone are highlighted.

Synthetic Data by Lexicon Induction [Hu+ 2019]

Results of Synthetic Data by Lexicon Induction [Hu+ 2019]

		Medical	Subtitles	Law	Koran
	Unadapted	7.43	5.49	4.10	2.52
	Сору	13.28	6.68	5.32	3.22
	BT	18.51	11.25	11.55	8.18
	DALI-U	20.44	9.53	8.63	4.90
	DALI-S	19.03	9.80	8.64	4.91
	DALI-U+BT	24.34	13.35	13.74	8.11
Upper [DALI-GIZA++	28.39	9.37	11.45	8.09
bound [In-domain	46.19	27.29	40.52	19.40

Table 3: Comparison among different methods on adapting NMT from IT to {Medical, Subtitles, Law, Koran} domains, along with two oracle results

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
 - a. Data Centric
 - i. Using Monolingual Corpora
 - ii. Synthetic Parallel Corpora Generation

iii. Using Out-of-Domain Parallel Corpora

- b. Model Centric
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Multi-Domain [Kobus+ 2016]

Data Selection [Wang+ 2017]

Different Multi-Domain Approaches [Sajjad+ 2017]

Results of Multi-Domain Approaches [Sajjad+ 2017]

Fine-tuning

	ALL	Arabic-Er OD→TED	n glish UN→OPUS→TED	_		Arabic ALL	-English Selected	Germa ALL	an-English Selected
tst13 tst14 avg.	36.1 30.2 33.2	37.9 32.1 35.0	36.8 31.2 34.0	-	tst13 tst14 avg.	36.1 30.2 33.2	32.7 27.8 30.3	35.7 30.8 33.3	34.1 29.9 32.0
	ALL	German-E OD→TED	nglish EP→CC→TED			A OPUS	rabic-Eng ALL	glish ENS _b	ENS_w
tst13 tst14 avg.	35.7 30.8 33.3	38.1 32.8 35.4	36.8 31.7 34.3		tst13 tst14 avg.	32.2 27.3 29.7	36.1 30.2 33.2	31.9 25.8 28.9	34.3 28.6 31.5
-					0				

 Table 4:
 Stacking versus concatenation

Table 6: Comparing results of balanced ensemble (ENS_b) and weighted ensemble (ENS_w) with the best individual model and the concatenated mode₄

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
 - a. Data Centric
 - b. Model Centric
 - i. Training Objective Centric
 - ii. Architecture Centric
 - iii. Decoding Centric
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
 - a. Data Centric
 - b. Model Centric
 - i. Training Objective Centric: Sentence Weighting
 - ii. Architecture Centric
 - iii. Decoding Centric
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Sentence Weighting [Wang+ 2017]

Sentence Selection and Weighting [Wang+ 2018]

sentence selection is a special case of sentence weighting, i.e., the sentences with low-weights are cut off

Results of sentence Selection and Weighting [Wang+ 2018]

IWSLT EN-FR	dev10	test10	test11
in	27.66	32.11	35.22
out	24.93	29.60	32.27
in + out	25.14	29.94	33.50
ensemble $(in + out)$	28.48	33.63	37.67
sampler	28.67	34.12	38.08
Kobus [54]	27.87	33.81	37.44
Axelrod [35]	27.85	34.03	38.30
sentence selection (δ_{fe})	29.38+	35.57++	39.20++
sentence weighting	29.14+	34.80+	38.73
batch weighting	29.81++	35.54++	39.48++
sentence scoring+sentence weighting	29.97++	35.64++	40.17++
sentence selection+batch weighting	30.17++	36.03++	40.59++

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
 - a. Data Centric
 - b. Model Centric
 - i. Training Objective Centric: Fine Tuning
 - ii. Architecture Centric
 - iii. Decoding Centric
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Fine Tuning [Luong+ 2015; Sennrich+ 2016; Servan+ 2016; Freitag+ 2016]

Effects of Components in Fine Tuning [Thompson+ 2018]

Prevent Out-of-domain Translation Degradation [Dakwale+ 2017]

Curriculum Learning [Zhang+ 2019]

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
 - a. Data Centric
 - b. Model Centric
 - i. Training Objective Centric: Mixed Fine Tuning
 - ii. Architecture Centric
 - iii. Decoding Centric
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Mixed Fine Tuning [Chu+ 2017]

Multilingual and Multi-Domain [Chu+ 2018]

Experimental Settings

• MT tasks

	Corpus (domain)	train	dev	test
In-domain	ALT-JE (Wikinews) [Thu+ 2016]	18k	1,000	1,018
Out-of-domain	KFTT-JE (Wiki-Kyoto) [Neubig+ 2011]	440k	1,166	1,160
	IWSLT-JE (spoken) [Gettolo+ 2015]	223k	871	1,549
	IWSLT-CE (spoken) [Gettolo+ 2015]	209k	887	1,570

- MT systems
 - SMT: Moses [Koehn+ 2007]
 - NMT: Transformer [Vaswani+ 2017]

Results on ALT-JE Without Domain Adaptation

Domain Adaptation Results on ALT-JE

Translation Examples

- Input: シドニーのランドウィック競馬場の8頭のサラブレッド競走馬が馬インフルエン ザに感染していることが確認された。
- Reference: it has been confirmed that eight thoroughbred race horses at randwick racecourse in sydney have been infected with equine influenza.
- NMT baseline: the thoroughbred has been confirmed to be infected with the kurawicked when the thoroughbred was infected.
- Fine tuning: it was confirmed that the eight main randwick service predominantly was infected by horse flu.
- Multi-domain: sydney's eight horsthoroughbourghbours were confirmed to be infected with influenza at the horse.
- Mixed fine tuning: it was confirmed that the eight thoroughbred horse racing at the sydney's randowic race course was infected with horse flu.

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
 - a. Data Centric
 - b. Model Centric
 - i. Training Objective Centric
 - ii. Architecture Centric: Deep Fusion
 - iii. Decoding Centric
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Deep Fusion (1/2) [Gulcehre+ 2015]

Deep Fusion (2/2) [Domhan+ 2017]

RNNLM and NMT models are trained jointly

(a) baseline

(b) + LML

68

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
 - a. Data Centric
 - b. Model Centric
 - i. Training Objective Centric
 - ii. Architecture Centric: Domain Discriminator
 - iii. Decoding Centric
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Domain Discriminator [Britz+ 2017]

Word-Level Domain Discriminator [Zeng+ 2018]

Multiple Encoders and Decoders [Gu+ 2019]

Results of Multiple Encoders and Decoders [Gu+ 2019]

	En-Zh	dev	test	average
	In	32.45	30.42	31.44
N /I I. t .:	Out + In	30.37	28.76	29.57
domain	Sampler	35.06	32.97	34.02
aomam	Fine Tune	35.02	33.36	34.19
Tag <	DC	31.08	29.59	30.34
[Britz+ _ 2017]	DM	30.98	29.73	30.36
	TTM	31.77	30.11	30.94
	ADM	31.23	29.88	30.56
	our method	36.55**	34.84**	35.70

En-De	test06	test07	average		
In	23.36	25.00	24.18		
Out + In	20.69	22.43	21.56		
Sampler	26.83	29.01	27.92		
Fine Tune	27.02	29.19	28.11		
our method	27.97*	30.67**	29.32		

Table 2: Results of the WMT 07 en-de translation experiments.

Table 1: Results of the en-zh translation experiments.

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
 - a. Data Centric
 - b. Model Centric
 - i. Training Objective Centric
 - ii. Architecture Centric: Domain Control
 - iii. Decoding Centric
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Src: Headache may be experienced @MED@ Tgt: Des céphalées peuvent survenir

Extreme Adaptation [Michel+ 2018]

Source	Translation
I want home	[Man]: Je suis rentré à la maison
I went nome	[Woman]: Je suis rentrée à la maison
I do drug tosting	[Doctor]: Je teste des médicaments
I do di ug testing	[Police]: Je dépiste des drogues

Table 1: Examples where speaker information influences English-French translation.

factor_bias

Global parameters

×

× | + | = | = |

0 + **0** + **00** × **0**

Word probabilities

full_bias

=

Results of Extreme Adaptation [Michel+ 2018]

Figure 2: Speaker classification accuracy of our continuous bag-of-n-grams model.

18.0

18.2

19.5

20%

15.7

15.4

∎base

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
 - a. Data Centric
 - b. Model Centric
 - i. Training Objective Centric
 - ii. Architecture Centric
 - iii. Decoding Centric
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Shallow Fusion [Gulcehre+ 2015]

Ensembling [Freitag+ 2016]

Neural Lattice Search [Khayrallah+ 2017]

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
- 4. Domain Adaptation in Specific Scenarios
 - a. Input Domain Unknown
 - b. Incremental/Online Domain Adaptation
- 5. Datasets and Resources
- 6. Future Directions

Input Domain Unknown

Sentence Retrieve Based Model [Li+ 2016]

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
- 4. Domain Adaptation in Specific Scenarios
 - a. Input Domain Unknown
 - b. Incremental/Online Domain Adaptation
- 5. Datasets and Resources
- 6. Future Directions

Post-edit for Online Domain Adaptation [Turchi+ 2017]

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions

Datasets and Resources

Studies	Language pairs	In-domain corpora	Out-of-domain corpora
Wang et al. [114, 115, 116]	En-De & En-Fr	IWSLT	WMT
Chu et al. [19]	Zh-En	IWSLT	NTCIR
	Zh-Ja	Wiki-CJ	ASPEC
Chen et al. [11]	Zh-En	Dev data of NIST	Training data of NIST
	En-Fr	Dev data of WMT	Training data of WMT
Michel and Neubig [79]	En-Fr & En-De & En-Es	Certain speaker of IWSLT	IWSLT
van der Wees et al. [110]	En-De	Dev data of TED &WMT	Training data of TED
		& Movie dialogues	& <u>WMT &</u> Movie dialogues
		& EMEA medical	& EMEA medical
Zhang et al. [130]	En-De & Ru-En	IWSLT & Patents	Paracrawl
Farajian et al. [33]	En-Fr	Multi-domain	Multi-domain
Zhang et al. [130]	Ru-En & En-De	IWSLT & Patent	Web-crawled
Gu et al. [42]	En-Zh	Laws	LDC
	En-De	News Commentary	<u>WMT (</u> NEWS)

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions
 - a. Multilingual and Multi-Domain Adaptation
 - b. Unsupervised NMT

Multi-stage Learning [Dabre+ 2019]

Results of Multi-stage Learning [Dabre+ 2019]

#	# XX		Model	Training configuration			YY test set						
#	ΛΛ	$\mathbf{A} \mid \mathbf{N}$	capacity	Pre	Mix	Pure	Bn	T1	Id	Ja	Km	Ms	Vi
1.	-	1	1-to-1	-	-	\checkmark	3.99	24.04	24.10	11.03	22.53	29.85	27.39
2.	Zh	1	1-to-2	\checkmark	-	\checkmark	8.86^{*}	27.54*	27.10^{*}	19.07*	28.41^{*}	32.52*	34.63*
3.	Zh	1	1-to-2	-	\checkmark	\checkmark	4.90^{*}	23.07	23.37	13.97*	26.13^{*}	29.24	29.82^{*}
4.	Zh	1	1-to-2	\checkmark	\checkmark	\checkmark	7.99^{*}	26.61*	25.62^{*}	18.39*	27.49^{*}	31.63*	34.22*
5.	Zh	7	1-to-8	\checkmark	-	\checkmark	8.54*	26.88*	26.02^{*}	18.99*	27.07^{*}	32.39*	33.32*
6.	Zh	7	1-to-8	-	\checkmark	\checkmark	9.43*	25.86^{*}	26.33^{*}	19.34*	26.86^{*}	32.39*	33.28*
7.	Zh	7	1-to-8	\checkmark	\checkmark	\checkmark	10.30 *+†	28.22*+1	27.24*†	20.08 *+†	28.66*†	33.19 *+†	35.34*+†
2.	Ja	1	1-to-2	\checkmark	-	\checkmark	9.16*	28.06^{*}	26.53*	21.55*	27.98^{*}	33.68*	33.93*
3.	Ja	1	1-to-2	-	\checkmark	\checkmark	4.37	22.91	23.37	16.47*	23.36*	29.28	29.10*
4.	Ja	1	1-to-2	\checkmark	\checkmark	\checkmark	8.77^{*}	26.64^{*}	25.88^{*}	21.61*	27.55^{*}	32.45*	34.29*
5.	Ja	7	1-to-8	\checkmark	-	\checkmark	9.43*	27.45*	26.70^{*}	21.79*	27.87*	32.92*	34.28*
6.	Ja	7	1-to-8	-	\checkmark	\checkmark	9.96*+	28.39*	27.22^{*+}	21.03^{*}	28.91*+	33.75*	36.00^{*+}
7.	Ja	7	1-to-8	\checkmark	\checkmark	\checkmark	10.77 ^{*+†}	28.62*+	28.89*+†	22.60 *+†	30.03*+†	34.75 *+†	37.06 *+†

- 1. Brief Introduction of Domain Adaptation
- 2. Domain Adaptation for SMT
- 3. Domain Adaptation for NMT
- 4. Domain Adaptation in Specific Scenarios
- 5. Datasets and Resources
- 6. Future Directions
 - a. Multilingual and Multi-Domain Adaptation
 - b. Unsupervised NMT

Domain Adaptation for Unsupervised NMT

Scenarios for unsupervised NMT ate different from supervised NMT

Scenarios	Abbreviation	L_1 in-domain	L_2 in-domain	L_1 out-of-domain	L_2 out-of-domain
Monolingual corpora	II	\checkmark	\checkmark	×	×
from some domains	00	×	×	\checkmark	\checkmark
	IIOO	\checkmark	\checkmark	\checkmark	\checkmark
Monolingual corpora	IOO	×	\checkmark	\checkmark	\checkmark
from different domains	IIO	\checkmark	\checkmark	\checkmark	×
from different domains	ΙΟ	×	\checkmark	\checkmark	×

Some Initial Results [Sun+ 2019]

Scenario Supervision		Method	De-En		En-De		Fr-En		En-Fr		#
Sechario Supervisi	Supervision	Wiethod	test2012	test2013	test2012	test2013	test2010	test2011	test2010	test2011	"
TT	Vas	Wang et al. (2018)	n/a	n/a	23.07	25.40	n/a	n/a	32.11	35.22	1
11	105	Base	33.68	35.41	28.09	30.48	36.13	40.07	36.43	37.58	2
II	No	Base	24.42	25.65	21.99	22.72	25.94	29.73	25.32	27.06	3
OO	INO	Race	21 21	21.66	10.25	0 00	21 28	78 77	23.08	26.08	4
IIOO	Na	Existing do	main a	adapta	ition m	ethod	s still v	vork	26.35	35 30.12	5
	NO	but perform	n differ	ently i	n diffe	rent sc	enario		29.08	33.67	6
100	N	but periorn	i unici	Citty i	in unic		Chanc		25.18	28.73	7
<i>100</i> No	NO	FT	22.75	23.14	21.09	21.78	28.37	33.57	26.16	30.14	8
	No	Base	11.11	10.30	11.54	11.95	17.88	20.32	17.02	18.16	9
ΠO	INU	FT+BW	26.12	27.33	22.63	23.72	27.88	32.16	25.42	28.05	10
	No	Base	10.79	10.77	11.44	11.82	18.00	20.91	16.19	16.84	11
10	INO	BW	17.78	18.00	16.01	16.60	22.53	25.29	20.04	22.12	12
		DW	17.70	10.00	10.01	10.00	22.33	23.27	20.04	22,12	12

BW: batch weighting

